
Damask: A Tool for Early-Stage Design and
Prototyping of Cross-Device User Interfaces

James Lin

Group for User Interface Research, EECS Department
UC Berkeley

Berkeley, CA 94720-1776
jimlin@cs.berkeley.edu

ABSTRACT
We are creating a system called Damask to better support
UIs that run across several types of devices. With Damask,
the designer will design a UI for one device, by sketching
the design and by specifying which design patterns the
interface uses. The patterns will help Damask generate
user interfaces optimized for the other target devices. The
generated interfaces will be of sufficient quality so that it
will be more convenient to use Damask than to design
each of the other interfaces separately, and the ease with
which designers will be able to create designs will
encourage them to engage in iterative design.
KEYWORDS
cross-device user interfaces, multi-channel user interfaces,
mobile computing
INTRODUCTION
People often use a variety of computing devices, such as
PCs, PDAs, and cell phones, to access the same
information. The user interface to this information needs
to be different for each device, due to different input and
output constraints. Currently, designers designing such
cross-device UIs either have to design a UI separately for
each device, which is time consuming, or use a program
to automatically generate interfaces, which often leads to
awkward interaction.
We believe that there is a way that will allow designers to
design and prototype cross-device UIs that are appropriate
for each device, yet take much less time than designing
each design-specific UI separately. Specifically, a tool that
uses design patterns to bridge the gap between device-
specific UIs will enable designers to create cross-device
UIs with the same quality as if the designer designed each
device-specific UI separately, but in much less time.
To test this hypothesis, we are creating a system called
Damask [9] that aims to combine the advantages of
designing multiple interfaces from scratch with the speed
of automatically generating interfaces. Designers using it
will be able to create user interfaces highly optimized for

several devices, much faster than if they created each of
them from scratch.
With Damask, the designer will design a UI for one device,
by sketching the design and by specifying which design
patterns the interface uses. As the designer creates an
interface, Damask will use the sketches and patterns to
construct an abstract model, which captures aspects of the
UI design at a high level of abstraction. When the designer
is ready to create interfaces for the other devices, Damask
will use the abstract model to generate the other device-
specific interfaces, which the designer could refine if he
or she wanted. The generated interfaces will be good
enough so that it would be more convenient to use the
tool than to design each of the other interfaces separately.
Damask will be aimed at designers who want to design
and prototype a UI targeted at three types of interfaces: the
web via a desktop PC, cell phone displays, and prompt-
and-response style voice interfaces.
Through our work in Damask, we expect to better
understand how designers currently design cross-device
UIs, develop algorithms for retargeting a UI sketch from
one device to other devices, implement those algorithms
within Damask, and then evaluate Damask showing that
designers using it can create cross-device UI designs that
are at least as good as designing each device-specific
interface separately, in less time.
RELATED WORK
Our work is closely related to the concept of model-based
user interfaces, designing user interfaces based on an
abstract model of the interface rather than visual
appearance (see [16] for a summary and retrospective).
This allows for rendering of the user interface in multiple
ways, such as using a drop-down list or presenting a voice
menu instead of radio buttons.
However, model-based UI tools often force designers to
think at a high level of abstraction too early in the design
process. Designers are accustomed to thinking about
concrete interfaces at the beginning. In addition,
specifying models often looks like programming, at which
most designers are not skilled, so specifying models
impedes their main task of designing user interfaces.

There has been much work on automatically transforming
interfaces meant for one device or modality to another.
Much of it has focused on transforming existing, finished

desktop web interfaces to handheld interfaces at run-time
[4, 7, 11], which unfortunately often results in awkward
interaction. Others have worked on converting GUIs to
audio interfaces [13, 15], mostly to benefit the blind and
visually impaired. With most of these tools, designers
cannot modify the results of the transformation process.
Since our tool is not meant for the final implementation of
UIs, designers are free to modify the generated UI design.
There are several model-based projects [2, 5, 6] that
specifically address the issue of creating user interfaces
targeted at multiple devices. These projects directly
expose models to the UI designer, while our tool will
avoid doing this.
PIMA [3] and Microsoft’s ASP.NET mobile controls [12]
allow designers to design cross-device web applications.
A designer using either of them describes the
application’s user interface in an abstract representation,
by laying out abstract widgets linearly in a constrained
Visual Basic-like form designer. The representation is
then converted into concrete device-specific UIs. However,
these tools are not appropriate for early-stage design,
because designers tend to think about concrete user
interfaces, not abstract representations.
There are several projects that specify platforms for
creating universal remote controls (e.g., [14, 18]). These
platforms use high-level descriptions of a remote
control’s user interface which can then be realized on a
variety of hardware devices, such as PDAs or Braille
readers. The target domain of universal remote controls is
narrower than Damask’s, but the UIs that are rendered
from the abstract description must be appealing and useful
immediately, without additional tweaking. Our work, on
the other hand, is targeting a broader set of user interfaces,
but the generated interfaces will most likely be modified

by the user interface designers before being released.
OVERVIEW OF DAMASK’S APPROACH
At a high level, Damask will include a catalog of design
patterns from the book The Design of Sites [17] that
designers can use in their designs. Each design pattern
will have specific examples of how the pattern has been
used in other projects, and several generalized solutions
capturing the essence of the examples. Each design
pattern will have a separate solution for each device.
Designers will create their UI designs by sketching and by
adding instances of patterns to their design for one device.
Damask will take that design and generate UI design
sketches for the other two devices, which the designers
can go back and modify if desired. Finally, designers can
use Damask (or SUEDE [8] for voice interfaces) to run
their designs in a device simulator, so that they can
interact with their design sketches.
DAMASK’S PROPOSED USER INTERFACE
Damask’s proposed user interface consists of several
regions (Figure 1). The canvas is where the designer will
sketch the actual user interface design. The design will
include which patterns it is using, as denoted by a red
outline and the name of the pattern. There will be tabs
above the canvas where designers will choose which
target device they are viewing. To view several device-
specific UIs at the same time, the designer will be able to
split the canvas or view the design in multiple windows.
Damask will also have a Pattern Explorer sidebar, where
designers can browse for patterns to be instantiated in
their designs, and a Pattern sidebar where designers can
find details about a particular pattern, instantiate a pattern,
and create their own patterns. Each pattern will have eight
parts, which correspond to the structure of patterns found
in several pattern languages such as [1] and [17]:

• name
• sensitizing image
• background
• problem

• forces
• examples
• solution
• references

Figure 1. Damask’s proposed user interface.

Two of the sections warrant more elaboration. The
Examples section will contain real examples of the pattern
in use. It will also be constantly updated: whenever a
pattern is instantiated, that instance will be added to the
Examples section and will be continuously updated
whenever the designer modified the instance.
The Solution section will contain generalized solutions
for the pattern. Like the canvas, the Solution section will
also be divided into three sections, with one solution for
each device supported by Damask.
CREATING CROSS-DEVICE INTERFACES
Here is how we envision a designer using Damask to
design a UI, for example, an e-commerce web site for the
PC and cell phone. The designer decides to first target the
PC, so he sketches out some web pages for the PC version
of the web site. Here is one such page:

Instead of sketching out all of the
pages from scratch, the designer
takes advantage of the patterns
built into Damask. He brings up
the Pattern Explorer to browse
through the patterns, and comes
across the SHOPPING CART pattern
(Figure 2). He sees that there are
two generalized solutions for the
SHOPPING CART, one for a PC and

one for a cell phone (see Figure 2, right).

The structure of the designer’s UI sketches and the
pattern’s solutions follow a visual language similar to
DENIM [10] and SUEDE [8]. A page represents a web page,
cell phone screen, or voice prompt. A designer can sketch
or type in a page. An arrow between two pages represents
an action that the end-user performs to go from one page
to the other. In a web page, the source of the arrow
represents the hyperlink the end-user clicks on to go to the
target page. In a cell phone screen, it represents a menu
item that the end-user selects. In a voice interface, the
arrow is annotated with the response that the end-user
says to go to the target voice prompt.
The designer picks the PC version of the SHOPPING CART
solution and drags the leftmost page of the solution onto
the canvas, bringing the rest of the solution along. Then
he drops it on top of the page that he first sketched. This
merges the contents of that pattern page with his sketched
page and adds the rest of the pattern to his design.
SHOPPING CART has now been instantiated in his design
(Figure 3).
The pattern that the designer has just instantiated is
generic, for example, having mostly text placeholders
instead of actual text. The designer now customizes the
pattern instance to fit his own project. He replaces the text
placeholders with actual text, moves widgets around, and
adds his own images. He could even add pages and
change the arrows if he decides that is appropriate. As the
designer customizes the pattern instance, Damask keeps
track of his customizations. The pattern is now fully

integrated into his design (Figure 4).

Figure 3. The PC version of the e-commerce web site, with
shopping cart merged into it.

At some point, the designer decides he is ready to work
on the cell phone version of the web site. So he clicks on
the Cell Phone tab just above the canvas. Damask first
makes the cell phone-specific design by copying the PC-
specific design. Then it goes through the design and finds
which parts of the design are pattern instances and which
are not.
Damask modifies the parts of the design that are not
pattern instances by applying traditional model-based UI
techniques. For example, it will rearrange widgets to
compensate for the smaller screen, and replace sets of
radio buttons with drop-down boxes. Both perform the
same task, but drop-down boxes take up less space.
Damask replaces the pattern instances, which have been
PC specific up to now, with the corresponding cell-phone
pattern solutions. It then takes the customizations that the
designer applied to the PC-specific versions and applies
them to the cell-phone versions. This results in a pattern
instance specific to the cell phone but customized to the
application that is being designed (Figure 5).
Not all of the customizations will necessarily be applied.
For example, if the designer moves a widget in the PC
version, Damask will not apply that customization to the
cell-phone version, since the displays of cell phones are
so limited that the designer would most likely have to
move the widget again. One of the biggest research
challenges is deciding which customizations to take from
one device-specific instance and apply it to the others.
The instances of SHOPPING CART within this project are
automatically added to the Examples section of the
SHOPPING CART pattern within Damask’s pattern library.

F
s

Figure 2. Left: The Pattern Explorer with the SHOPPING CART
pattern highlighted. Right: The Pattern sidebar containing the
SHOPPING CART pattern.
igure 4. The PC version of the e-commerce web site, with
hopping cart customized.

This encourages reuse of designs and could decrease the
time and effort spent on future projects.
CREATING CUSTOM PATTERNS
Creating new design patterns in Damask consists of
several steps:
• Choosing the fragments of a design from which to

create a pattern.
• Generalizing those fragments to create generic

pattern solutions.
• Showing how the device-specific solutions of the

pattern relate to each other.
For example, suppose Damask did not have a SHOPPING
CART pattern, and the designer wanted to create one from
his design. To create SHOPPING CART, the designer first
opens up the Pattern Explorer sidebar, opens a context
menu, and chooses New Pattern. An empty Pattern
sidebar is created. The designer selects the part of the
design he wants to become part of the SHOPPING CART
pattern and drags it into the Pattern sidebar. Damask puts
the fragment into the pattern’s Solution and Examples
sections and marks the design with the new pattern.
The specific shopping cart that the designer dragged into
the Pattern sidebar has actual text and other details that
are not appropriate for a general solution of SHOPPING
CART. To make the solution more general, the designer
edits the solution, replacing actual text with placeholders,
and so on.
Finally, the designer takes the device-specific pattern
solutions and shows how they relate to each other. This is
so that when Damask generates a UI for another device, it
knows how to take the customizations the designer
applied to the first device-specific pattern instance and
apply them to the second device-specific pattern instance.
The mechanism for specifying this is subject to further
research.
SUMMARY
We believe that combining the concepts of model-based
UIs and design patterns is a promising approach for
creating cross-device UIs. Our goal is to demonstrate this
by building Damask, which will take advantage of the
design patterns used in one UI sketch to create interactive
UI sketches optimized for other target devices, allowing

designers to create high quality cross-device UIs in less
time than current practices.

Figure 5. The cell phone version of the e-commerce web site
generated by Damask.

REFERENCES
1. Alexander, C., S. Ishikawa, M. Silverstein, M. Jacobson, I.

Fiksdahl-King, and S. Angel, A Pattern Language. New York:
Oxford University Press, 1977.

2. Ali, M.F. and M.A. Pérez-Quiñones. Using Task Models to
Generate Multi-Platform User Interfaces while Ensuring Usability.
In CHI 2002 Extended Abstracts. Minneapolis, MN. pp. 670-671,
April 20-25, 2002.

3. Bergman, L.D., G. Banavar, D. Soroker, and J. Sussman.
Combining Handcrafting and Automatic Generation of User-
Interfaces for Pervasive Devices. In Proc. CADUI'2002.
Valenciennes, France: May 15-17, 2002.

4. Buyukkokten, O., H. Garcia-Molina, A. Paepcke, and T. Winograd,
Power Browser: Efficient Web Browsing for PDAs. CHI Letters:
Proc. CHI 2000, 2000. 2(1): pp. 430-437.

5. Calvary, G., J. Coutaz, and D. Thevenin. A Unifying Reference
Framework for the Development of Plastic User Interfaces. In Proc.
EHCI 2001. Toronto, Canada: Springer-Verlag. pp. 173-192, May
11-13, 2001.

6. Eisenstein, J., J. Vanderdonckt, and A. Puerta. Applying Model-
Based Techniques to the Development of UIs for Mobile
Computers. In Proc. IUI 2001. Santa Fe, NM: ACM Press. pp. 69-
76, January 14-17, 2001.

7. Fox, A., I. Goldberg, S.D. Gribble, D.C. Lee, A. Polito, and E.A.
Brewer. Experience With Top Gun Wingman: A Proxy-Based
Graphical Web Browser for the 3Com PalmPilot. In Proc.
Middleware '98. Lake District, UK, Sept. 15-18, 1998.

8. Klemmer, S.R., A.K. Sinha, J. Chen, J.A. Landay, N. Aboobaker,
and A. Wang, SUEDE: A Wizard of Oz Prototyping Tool for
Speech User Interfaces. CHI Letters: Proc. of UIST 2000, 2000.
2(2): pp. 1-10.

9. Lin, J. and J.A. Landay. Damask: A Tool for Early-Stage Design
and Prototyping of Multi-Device User Interfaces. In Proceedings
of The 8th Intl. Conf. of Distributed Multimedia Systems (2002 Intl.
Workshop on Visual Computing). San Francisco, CA. pp. 573-580,
Sept. 26-28, 2002.

10. Lin, J., M. Thomsen, and J.A. Landay, A Visual Language for
Sketching Large and Complex Interactive Designs. CHI Letters:
Proc. CHI 2002, 2002. 4(1): pp. 307-314.

11. Lopez, J.F. and P. Szekely, Web Page Adaptation for Universal
Access, in Universal Access in HCI: Towards and Information
Society for All (Proc. of 1st Intl. Conf. on Universal Access in HCI,
New Orleans, LA, August 8-10, 2001), C. Stephanidis, Editor.
Lawrence Erlbaum Associates: Mahwah, NJ. p. 690-694, 2001.

12. Microsoft, ASP.NET Mobile Controls. Microsoft Corporation:
Redmond, WA.
http://msdn.microsoft.com/vstudio/device/mobilecontrols/

13. Mynatt, E.D. and W.K. Edwards. An Architecture for
Transforming Graphical Interfaces. In Proc. UIST '94. Marina del
Rey, California. pp. 39-47, November 2-4, 1994.

14. Nichols, J. Informing Automatic Generation of Remote Control
Interfaces with Human Designs. In CHI 2002 Extended Abstracts.
Minneapolis, MN. pp. 864-865, April 20-25, 2002.

15. Olsen, D.R., S.E. Hudson, R.C.-M. Tam, G. Conaty, M. Phelps,
and J.M. Heiner. Speech Interaction with Graphical User Interfaces.
In Proc. INTERACT2001. Tokyo, Japan: IOS Press, 2001.

16. Szekely, P. Retrospective and Challenges for Model-Based
Interface Development. In Proc. DSV-IS'96. Namur, Belgium. pp.
1-27, June 5-7, 1996.

17. van Duyne, D.K., J.A. Landay, and J.I. Hong, The Design of Sites.
Boston: Addison-Wesley, 2002.

18. Zimmermann, G., G. Vanderheiden, and A. Gilman. Prototype
Implementations for a Universal Remote Console Specification. In
CHI 2002 Extended Abstracts. Minneapolis, MN. pp. 510-511,
April 20-25, 2002.

	ABSTRACT
	KEYWORDS
	INTRODUCTION
	RELATED WORK
	OVERVIEW OF DAMASK’S APPROACH
	DAMASK’S PROPOSED USER INTERFACE
	CREATING CROSS-DEVICE INTERFACES
	CREATING CUSTOM PATTERNS
	SUMMARY
	REFERENCES

