
Damask: A Tool for Early-Stage Design and
Prototyping of Multi-Device User Interfaces

James Lin and James A. Landay

Group for User Interface Research, EECS Department
UC Berkeley

Berkeley, CA 94720-1776
{jimlin, landay}@cs.berkeley.edu

Abstract People often use a variety of computing devices, such as PCs, PDAs, and cell phones, to access the same informa-
tion. The user interface to this information needs to be different for each device, due to different input and output constraints.
Currently, designers designing such multi-device user interfaces either have to design a UI separately for each device, which is
time consuming, or use a program to automatically generate interfaces, which often results in interfaces that are awkward. We
are creating a system called Damask to better support multi-device UI design. With Damask, the designer will design a UI for
one device, by sketching the design and by specifying which design patterns the interface uses. The patterns will help Damask
generate user interfaces optimized for the other target devices. The generated interfaces will be of sufficient quality so that it
will be more convenient to use Damask than to design each of the other interfaces separately, and the ease with which designers
will be able to create designs will encourage them to engage in iterative design.

1 Introduction
The experience of using a computer is increasingly di-
verse. Interaction with a PC in a home or office is now
augmented with a variety of devices, such as handheld
personal digital assistants (PDAs), cell phones, pagers, and
even telematics systems in cars. Companies as varied as
Amazon, TV Guide, and Microsoft are starting to allow
their customers to access their services through such a
variety of devices. For example, you can find out which
theaters are playing a particular movie and at what time
through a voice-based phone interface, a PDA web site, or
a desktop web site. However, due to the attributes and
limitations of each device, the interfaces across devices are
often drastically different. This makes the task of design-
ing a user interface (UI) for a service that targets several
devices difficult, because you essentially need a distinct UI
for each device.

If UI designers want to target several devices for an ap-
plication, they generally face two alternatives. One option
is to design a user interface for each targeted device. This
process results in interfaces that are optimized for each
device, but it has several drawbacks. Designing several
user interfaces is very time consuming, and the more de-
vices the designer targets, the more time and effort the
designer must spend. It is also hard for designers to keep
the designs coordinated across devices. A designer could
add a feature to one device-specific UI, and then easily
forget to at least investigate the possibility of adding that
feature to another device-specific UI. Also, a different
person may design each device-specific UI, exacerbating
this problem.

The other option is to design an interface for only one
device and let special-purpose programs automatically
generate the interfaces for other devices. This cuts down

development time but leads to interfaces that are awkward
to use. Consequently, they are only used as a last resort by
end-users who have no other way to access the information
or perform the task provided by that UI.

The difficulty of designing for multiple devices dis-
courages designers from iteratively refining and proto-
typing their designs. One of the best ways to create a good
user interface is to continually design, test, and analyze a
user interface idea [15]. If creating a design in the first
place is difficult, designers will not want to try multiple
designs or drastically change their initial design, which
may impact the quality of the final design. Tools that make
early-stage design, prototyping, and testing multi-device
user interfaces easier could dramatically improve the us-
ability and usefulness of those interfaces.

We believe that there is a way that will allow designers
to design and prototype multi-device UIs that are appro-
priate for each device, yet take much less time than de-
signing each design-specific UI separately, by using design
patterns [1, 31]. We believe that there are patterns in user
interfaces for multiple devices, and that the structure of
these pattern solutions can be dramatically different, de-
pending on the devices’ characteristics. A shopping cart
checkout pattern solution for a desktop web site could
consist of several pages, asking for the buyer’s name,
address, credit card number, and so on. Entering all of this
information would be extremely tedious on a cell phone.
Instead, a pattern solution for the cell phone could be a
single screen that asks, “Ship to cell phone address and
charge to cell phone bill? Yes/No”.

To demonstrate this, we are designing such a tool, called
Damask, which will support the early-stage design and
prototyping of multi-device interfaces. Damask aims to
combine the advantages of designing multiple interfaces
from scratch with the speed of automatically generating

interfaces. Designers using it could create user interfaces
highly optimized for several devices, much faster than if
they created each of them from scratch.

With Damask, the designer would design a user interface
for one device, by sketching the design and by specifying
which design patterns the interface uses. As the designer
creates an interface, Damask uses the sketches and patterns
to construct an abstract model [9], which captures aspects
of the UI design at a high level of abstraction. When the
designer is ready to create interfaces for the other devices,
Damask uses the abstract model to generate the other de-
vice-specific interfaces, which the designer could refine if
he or she wanted. The generated interfaces will be good
enough so that it would be more convenient to use the tool
than to design each of the other interfaces separately.

Damask will also provide a Run mode in which design-
ers interact with their design sketches in a browser that will
roughly simulate the devices they are targeting. This will
allow designers to get quick feedback about their design
from other team members or even their target users, which
will inform any modifications they want to make to their
design.

In the rest of this article, we first discuss two of the main
concepts that Damask embodies, model-based user inter-
faces and design patterns, and related work in more detail.
We then describe our preliminary ideas for Damask, in-
cluding how a designer would use it to design multi-device
user interfaces.

2 Related Work
The next section contrasts Damask’s approach to other
related work, including model-based UI tools, tool support
for patterns, combinations of model-based and pat-
tern-based approaches, and tools to transform UIs from
one device or modality to another.

2.1 Model-Based UI Tools

Damask’s underlying representation of UI designs and
patterns would be based on the concept of model-based
user interfaces, designing user interfaces based not just on
visual appearance but also on an abstract model of the
interface [9]. The model describes the interface at a higher
level of abstraction than the actual widgets. For example,
instead of describing a dialog box as having three radio
buttons and two check boxes, an abstract model would
describe it has having one part where the user can select
one of three items, and two other on-off selections. This
level of abstraction allows the possibility of rendering the
user interface in other ways, such as using a drop-down list
or presenting a voice menu instead of radio buttons. Using
patterns for describing interfaces would further increase
the level of abstraction and allow even more radical dif-
ferences in interfaces across devices.

While model-based user interfaces have the promise of
creating flexible interfaces that can adapt to their envi-
ronment, they have not been widely adopted in the com-
mercial software development world, which has instead

gravitated towards visual interface builders. We believe
one reason for the lack of acceptance is the fact that many
model-based UI tools do not match or augment the work
practices of designers. They often force designers to think
at a high level of abstraction too early in the design proc-
ess, by making them design in terms of abstract widgets
(e.g., [27, 29, 34]), or by specifying a task model which is
then transformed into a concrete UI (e.g., [9, 25]). De-
signers are accustomed to thinking about concrete inter-
faces at the beginning. In addition, specifying models often
requires the designer to deal with preconditions, postcon-
ditions, and conditionals. This starts to look like pro-
gramming, which most designers are not skilled at, so
specifying models impedes their main task of designing
UIs.

We believe that Damask’s approach could allow UI de-
signers to specify their designs at a more abstract level, but
with a vocabulary that designers understand, via sketches
and design patterns. We also believe that design patterns
could give Damask information that would allow it to
generate interfaces that are more appropriate for the tar-
geted devices.

The philosophy of most model-based UI research is that
the model-based tools would be the primary way to create
the finished user interface, although many tools expect the
user interface to be modified somewhat by the designer. In
contrast, Damask is targeted towards prototyping. We do
not expect the designer to use Damask to create the final
user interface, nor do we expect Damask’s generated user
interfaces to be used without modification. Since we are
targeting prototyping, the generated user interface does not
need to be ideal, since in the early stages of design, the
designer is concerned more with the user’s interaction flow
rather than the details of the interface [33].

2.2 Tool Support for Patterns

Patterns were first introduced by Christopher Alexander
and his colleagues in the field of architecture. He states,
“Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice.” [1] This basic definition has become
popular in the software engineering (e.g., [11]) and hu-
man-computer interaction (HCI) fields [4, 30-32].

In computer science, patterns have made the most im-
pact in software engineering, especially object-oriented
programming [3, 11]. Consequently, software tools that
support patterns have mostly targeted object-oriented
software development (e.g., [5, 19, 26]).

While these tools only address software engineering is-
sues, there are some aspects of these tools which address
issues that any pattern-based tool needs to support, such as
browsing and searching for patterns, and customizing
patterns for a particular application. However, customizing
patterns with these tools usually involves a form-based
interface, which would fit awkwardly with Damask’s

sketch-based interface. Also, if a developer wants to use a
pattern, some of these tools force the developer to change
his solution to make it fit the pattern. Damask will not do
this. One of the most important aspects of patterns is their
flexibility: using the Alexandrian definition of patterns, a
developer should be able to use a pattern many times but
never the same way twice. Designers using Damask will be
free to greatly modify how a pattern is used in their par-
ticular design, on which we will elaborate later.

There has been much discussion about using design pat-
terns in human-computer interaction (HCI) [4, 30-32], but
few HCI tools have been created that support patterns.
Paternó [24] describes extending a task and architecture
model editor to support patterns that are made up of model
fragments themselves. Paternó focuses on abstract task and
architecture patterns. A task pattern describes what steps a
user performs to execute a particular task, such as search-
ing, independent from a particular user interface. An ar-
chitecture pattern describes how the program implements a
task, such as how a program accesses a database to perform
a search. On the other hand, Damask will focus on more
concrete UI design patterns, since designers will be creat-
ing concrete UI designs using Damask.

2.3 Combining Models and Patterns

Other groups have proposed combining patterns and
model-based approaches (e.g., Paternó [24]). Hussey and
Carrington [13] discuss designing user interfaces by
starting out with an abstract UI specification, and then
methodically applying transformation patterns to it to
create a concrete UI specification. In contrast, designers
using Damask interact with concrete UI specifications that
contain UI design patterns.

2.4 User Interface Transformation Tools

There has been much work on automatically transforming
interfaces meant for one device or modality to another.
Many of these projects have focused on transforming ex-
isting, finished desktop web interfaces to PDA interfaces at
run-time [6, 10, 18]. However, shrinking interfaces from
large desktop displays to such small PDA displays often
results in awkward interaction. Others have worked on
converting GUIs to audio interfaces [21, 23], mostly to
benefit the blind and visually impaired. With most of these
tools, designers cannot modify the results of the interface
transformation process. Since Damask is a prototyping
tool, not a tool to create final UIs, designers will be free to
modify the generated user interface design.

Ultraman [28] provides a way for designers to control
the transformations, but it assumes they are comfortable
with the concept of trees, grammars, and writing code in
Java. Damask is targeting a different audience for a dif-
ferent part of the design cycle: designers who have little or
no experience programming, and early-stage design, be-
fore any interface is completely specified and ready to run.

There are several model-based projects that are specifi-
cally addressing the issue of creating user interfaces tar-

geted at multiple devices. Eisenstein, Vanderdonckt, and
Puerta [8] describe using MIMIC [25] to create models
which describe multi-device user interfaces. Their
methodology involves mapping common tasks in a task
model to presentation models optimized for the task.
However, this work does not directly address the case of
when the UIs for performing the same task on more than
one device are very different. Damask will use patterns to
address this issue.

Ali et al [2] discuss designing a multi-device UI using
four types of models: a task model, an abstract logical
model, physical family models, and platform-specific UI
descriptions in UIML. In contrast, Damask will avoid
directly exposing models to the UI designer.

There have been several projects that aim to create a
platform for creating universal remote controls (e.g., [22,
35]). These projects envision appliances that export
high-level descriptions of a remote control user interface to
a device, such as a PDA or a Braille reader, which then
renders that description into a concrete UI. The UI would
take the user’s input to the remote control UI and send it
back to the appliance for processing. There are two im-
portant distinctions between the problems these projects
are solving and Damask’s problem area. The target domain
of universal remote controls is narrower (remote controls
for appliances vs. web interaction), but the UIs that are
rendered from the abstract remote control description must
be appealing and useful immediately, without additional
tweaking. Damask, on the other hand, is targeting a
broader set of UIs (e.g., general web-style interaction on
PCs), but the interfaces that are generated will most likely
be modified by the UI designers before being released.

Calvary, Coutaz, and Thevenin [7] discuss a process
framework for developing plastic interfaces, which can
adapt to different devices. In addition to the typical
model-based approach, in which a designer creates a series
of models from top-level abstract models to a concrete
interface, the framework also covers translations between
platforms, which may happen at any model abstraction
level. This framework provides a useful way of thinking
about how to develop multi-device UIs, although with
Damask, top-level abstract models are not directly ex-
posed, so the framework is not directly applicable.

In MUSA [20], multi-device services are described with
an event graph, which abstractly describes the navigational
structure of a service and how it interacts with the services’
logic. MUSA dynamically generates UIs at run-time. This
differs from Damask, which focuses on the UI design
process, before the UI is ready for final deployment.

3 Overview of Damask’s approach
We believe that a tool that uses design patterns to bridge
the gap between device-specific UIs will enable designers
to create multi-device UIs with the same quality as if the
designer designed each device-specific UI separately, but
in much less time.

To test this, we will create a tool called Damask aimed at
designers who want to design and prototype a UI targeted
at three types of interfaces: the web accessed through a
desktop, cell phone displays, and prompt-and-response
style voice interfaces. We have picked these three because
they represent the “extremes” of the range of devices that
are widely used. For example, simply shrinking a screen
designed for a desktop PC will not result in a good cell
phone interface.

Damask will take an interactive sketch for a user inter-
face for one device and the design patterns used in that
sketch, and will create interactive user interface sketches
for the other devices. These generated designs will be of
sufficient quality and usefulness such that the designer will
spend less effort modifying the generated sketches than
creating them from scratch, and that the resulting designs
will be at least as good.

At a high level, Damask would include a catalog of de-
sign patterns that designers can use in their designs. Each
design pattern would have specific examples of how the
pattern has been used in other projects, and several gener-
alized solutions capturing the essence of the examples.
Each design pattern would have a separate solution for
each device.

Designers will create their UI designs by sketching and
by adding instances of patterns to their design for one
device. Damask will take that design and generate UI
design sketches for the other two devices, which the de-
signers can go back and modify if desired. Finally, de-
signers can use Damask (or SUEDE [14] for voice inter-
faces) to run their designs in a device simulator, so that
they can interact with their design sketches.

First, we will describe Damask’s proposed user inter-

face. Then we will walk through an example of how a
designer would design and run his UI design, and finally
how he would create his own design pattern.

3.1 Damask’s Proposed User Interface

Damask’s proposed user interface consists of several re-
gions (). The canvas is where the designer will
sketch the actual user interface design. The design will
include which patterns it is using, as denoted by a red
outline and the name of the pattern. There will be tabs
above the canvas where designers would choose which
target device they are viewing. To view the different de-
vice-specific UIs at the same time, the designer will be able
to split the canvas or view the design in multiple windows.

Figure 1

Figure 1. Damask’s proposed user interface.

Damask would also have a Pattern Explorer sidebar,
where designers could browse for patterns to be instanti-
ated in their designs, and the Pattern sidebar where de-
signers could find the details about a particular pattern,
instantiate a pattern, and create their own patterns. Each
pattern would have eight parts, which correspond to the
structure of patterns found in several pattern languages
such as [1] and [31]:

• name
• sensitizing image
• background
• problem

• forces
• examples
• solution
• references

Two of the sections warrant more elaboration. The
Examples section would contain real examples of the pat-
tern in use. It would also be constantly updated: whenever
a pattern is instantiated, that instance would be added to the
Examples section and would be continuously updated
whenever the designer modified the instance.

The Solution section would contain generalized so-
lutions for the pattern. Like the canvas, the Solution
section would also be divided into three sections, with
one solution for each device supported by Damask.

3.2 Creating Multi-device Interfaces
Here is how we envision a
designer using Damask to
design a UI, for example, an
e-commerce web site for the
PC and cell phone. The
designer decides to first
target the PC, so he sketches
out some web pages for the
PC version of the web site.
Here is one such page:

Instead of sketching out all o

the designer takes advantage o
Damask. He brings up the Pat
through the patterns, and com
CART pattern (Figure 2). He
generalized solutions for the SH
PC and one for a cell phone (se
f the pages from scratch,
f the patterns built into
tern Explorer to browse
es across the SHOPPING
sees that there are two
OPPING CART, one for a

e Figure 2, right).

The structure of the designer’s UI sketches and the pat-
tern’s solutions follow a visual language similar to DENIM
[17] and SUEDE [14]. A page represents a web page, cell
phone screen, or voice prompt. A designer can sketch or
type in a page. An arrow between two pages represents an
action that the end-user performs to go from one page to
the other. In a web page, the source of the arrow represents
the hyperlink the end-user clicks on to go to the target
page. In a cell phone screen, it represents a menu item that
the end user selects. In a voice interface, the arrow is an-
notated with the response that the end-user says to go to the
target voice prompt.

The designer picks the PC version of the SHOPPING CART
solution and drags the leftmost page of the pattern into the
canvas, bringing the rest of the pattern along. Then he
drops it on top of the page that he first sketched. This
merges the contents of that the pattern page with his
sketched page and adds the rest of the pattern to his design.
SHOPPING CART has now been instantiated in his design
(Figure 3).

The pattern that the designer has just instantiated is very
generic, for example, having mostly text placeholders
instead of actual text. The designer now customizes the
pattern instance to fit his own project. He replaces the text
placeholders with actual text, moves widgets around, and
adds his own images. He could even add pages and change
the arrows if he decides that is appropriate. As the designer
customizes the pattern instance, Damask keeps track of his
customizations. The pattern is now fully integrated into his

design (Figure 4).
Figure 2. Left: The Pattern Explorer with the SHOPPING
CART pattern highlighted. Right: The Pattern sidebar
containing the SHOPPING CART pattern.

Figure 4. The PC version of the e-commerce web site,
with SHOPPING CART customized.

At some point, the designer decides he is ready to work
on the cell phone version of the web site. So he clicks on
the Cell Phone tab just above the canvas. Damask first
makes the cell phone-specific design by copying the
PC-specific design. Then it goes through the design and
finds which parts of the design are pattern instances and
which are not.

Damask modifies the parts of the design that are not
pattern instances by applying traditional model-based UI
techniques. For example, it will rearrange widgets to com-
pensate for the smaller screen, and replace sets of radio
buttons with drop-down boxes. Both perform the same
abstract task, but drop-down boxes take up less space.

Damask replaces the pattern instances, which have been
PC-specific up to now, with the corresponding cell-phone
pattern solutions. It then takes the customizations that the
designer applied to the PC-specific versions and applies
them to the cell-phone versions. This results in a pattern
instance specific to the cell phone but customized to the
application that is being designed (F). igure 5

Not all of the customizations will necessarily be applied.
For example, if the designer moves a widget in the PC
version, Damask will not apply that customization to the
cell-phone version, since the displays of cell phones are so
limited that the designer would most likely have to move
the widget again anyway. One of the biggest research
challenges is deciding which customizations to take from
one device-specific instance and apply it to the others.

The instances of SHOPPING CART within this project are
automatically added to the Examples section of the
SHOPPING CART pattern within Damask’s pattern library.
This encourages reuse of designs and could decrease the

Figure 3. The PC version of the e-commerce web site, with
SHOPPING CART merged into it.
Figure 5. The cell phone version of the e-commerce web
site generated by Damask.

time and effort spent on future projects.

3.3 Managing Consistency in Multi-device In-
terfaces

Damask will allow a designer to edit one device-specific
UI without necessarily changing the other device-specific
UIs. Figuring out which edits will propagate from one
device-specific UI to the others is a key research question.
The following is the approach we are proposing to take.

Changes within a page, such as adding and removing
elements, will not be propagated across devices. However,
adding and removing pages on one device will cause pages
to be added or removed in the other devices. The idea is
that the particular layout and detailed content within a page
are not usually the same across devices, but adding and
removing pages indicates significant structural changes
that should be reflected in all device-specific UIs.

Often the designer will want the information in one page
for the desktop to be in several pages on a cell phone or in
many prompts and responses for a voice interface, even
though the overall structure is the same. In these cases, the
designer will be able execute a Split command on one page
to split it into several pages, or execute a Merge command
on several pages to merge them into a single page. Splitting
and merging pages in one device-specific UI will not result
in pages being added or removed in other device-specific
UIs. When a designer mouses over or edits a particular
page, the corresponding page or pages will be highlighted
in the other device-specific UIs, so that the designer can
keep track of the overall structure across devices.

In some parts of a UI design, the page structure will be
very different across different devices. Patterns will take
care of many of those cases, but when this occurs outside
of a pattern, the designer will be able to mark off a region
in the design, inside which no edits will be propagated to
the other device-specific UIs. Thus, a designer can create
or delete pages within the region, and no corresponding
pages will be created or deleted in the other device-specific
UIs.

3.4 Creating Custom Patterns

Creating new design patterns in Damask consists of several
steps:

• Choosing the fragments of a design from which to
create a pattern.

• Generalizing those fragments to create generic
pattern solutions.

• Showing how the device-specific solutions of the
pattern relate to each other.

We will illustrate this with an example. Suppose Dam-
ask did not have a SHOPPING CART pattern, and the designer
wanted to create one from his design. To create SHOPPING
CART, the designer first opens up the Pattern Explorer
sidebar, opens a context menu, and chooses New Pattern.
An empty Pattern sidebar is created. The designer selects
the part of the design he wants to become part of the

SHOPPING CART pattern and drags it into the Pattern side-
bar. Damask puts the fragment into the pattern’s Solution
and Examples sections and marks the design with the new
pattern. (See .) Figure 6

Figure 6. Top: Highlighting the portion of a design from which
to create a pattern. Bottom: The results of dragging the high-
lighted sections to the pattern sidebar.

The specific shopping cart that the designer dragged into
the Pattern sidebar has actual text and other details that are
not appropriate for a general solution of SHOPPING CART.
To make the solution more general, the designer edits the
solution, replacing actual text with placeholders, and so on.

Finally, the designer takes the device-specific pattern
solutions and shows how they relate to each other. This is
so that when Damask generates a UI for another device, it
knows how to take the customizations the designer applied
to the first device-specific pattern instance and apply them
to the second device-specific pattern instance. If the de-
signer does not specify these relationships in the pattern,
then when Damask uses the pattern as the basis for auto-
matically generating another interface for a second device,
the solution specific to the second device will be used
without applying any customizations to it.

One proposal for showing these relationships is to draw
lines between the related parts. In this case, the designer
views both the PC and cell phone SHOPPING CART solutions
and draws lines between them to show how they are re-
lated. For example, he draws a line from the shopping list
on the first page of the PC solution, to the shopping list on
the first page of the cell phone solution. This way, when
the designer fills in the list in the shopping cart in a PC
design, and then asks Damask to generate a cell phone
design, Damask knows to take the contents of the shopping

list in the PC version, and put them into the corresponding
list in the cell phone version.

There are many research questions to be answered here,
such as what happens if the designer relates two parts that
are not exactly the same (such as a list with three elements
with a list with one element), whether such a simple
mechanism is sufficiently powerful in enough cases, and
how to design such a mechanism that does not over-
whelmingly clutter the UI sketches.

4 Next Steps
The following is a discussion of the methodology we will
use to conduct our research into designing and prototyping
multi-device user interfaces.

4.1 Survey of Existing Multi-device UI Design
Practices and Design Patterns

We would like to get a more complete picture for how
designers currently design multi-device UIs. Therefore, we
will talk to employees at about six companies about this
topic. We will ask them, for a given application targeted at
multiple devices, whether the user interfaces were all de-
signed at the same time or at different times, whether it was
the same team or different groups of people who designed
them, how much communication there was among the
designers, and when the designers tested the user inter-
faces. We will also present our ideas about Damask and
ask them for their reactions.

So far, we have talked to four designers and one devel-
oper at three companies: a web portal company, an enter-
prise software company, and a PC software company. At
the web portal and PC software companies, we talked to
mobile UI designers. We found the desktop versions of a
UI were created before the mobile project was started. No
team designed both the mobile and desktop versions of a
user interface, and the mobile designers typically did not
talk to the desktop UI designers about the UI. Instead, the
mobile designers looked at the desktop UIs themselves to
get some ideas about what tasks they should support and
what the general flow of the UI should be, although they
did not rely on them. This tells us that we need to be aware
of the potential of several people using Damask to design
one UI, possibly at the same time.

At the enterprise software company, we talked with one
developer. He told us that his manager designed the user
interface for both the PDA and desktop versions of his
product, but afterwards, different teams worked on each
device-specific application. The developer mentioned that
because the domain of the application was so narrow, the
user interface design task was constrained. The user in-
terfaces typically consisted of tables of data processed
from a database, and interacting with the UI was mainly
navigating among those tables and filling forms.

When we presented our ideas about using patterns to
design multi-device UIs to the interviewees, they were all
enthusiastic about the approach, although they did not have

many specific suggestions or recommendations. This en-
couraged us to continue with our pattern-based approach.

We will also look for web sites that have been imple-
mented for both the desktop and for mobile devices, like
the PDA or cell phone, and examine them for common
design patterns so that they can be incorporated into
Damask. We have already identified several web sites to
examine, such as Amazon, Expedia, Google, and MSN.

4.2 Prototyping and Building Damask

After incorporating our findings from the previous section
into our UI design of Damask, we will build a low-fidelity
prototype of Damask and test it with UI designers in in-
dustry. Their feedback will inform the next prototype,
which will be a high-fidelity prototype written in Java. We
will use SATIN [12], a toolkit for creating sketch-based
applications in Java, and the code base from DENIM [16], a
sketch-based tool for web design.

While designing and building Damask, we will address
the research issues discussed above. They include:

• When taking customizations made to one pattern
instance and applying them to another, which
customizations should be applied?

• How do we maintain consistency between de-
vice-specific UIs? How do we handle inconsis-
tencies?

• How do we show the designer what parts of one
device-specific UI correspond to parts of the other
device-specific UIs?

• How do we support multiple designers accessing
the same design?

4.3 Evaluation

To evaluate Damask, we will recruit UI designers from
industry who have worked on multi-device projects and
ask them to design a multi-device UI. The form of the
experiment will depend on the results of our survey of
existing multi-device UI design practices. For example, we
may ask designers to design a UI for two devices or take an
existing UI and retarget it for another device. Among some
of the factors we may evaluate include how satisfied the
designers were using Damask, how “good” other UI de-
signers judge the designs, and how often and effectively
patterns were used.

5 Summary
We believe that combining the concepts of model-based
UIs and design patterns is a promising approach for cre-
ating multi-device UIs. Our goal is to demonstrate this by
building Damask, which will take advantage of the design
patterns used in one UI sketch to create interactive UI
sketches optimized for other target devices.

6 References
[1] Alexander, C., S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiks-

dahl-King, and S. Angel, A Pattern Language. New York: Oxford
University Press, 1977.

[2] Ali, M.F. and M.A. Pérez-Quiñones. Using Task Models to Gener-
ate Multi-Platform User Interfaces while Ensuring Usability. Proc.
Human Factors in Computing Systems: CHI 2002 Extended Ab-
stracts. Minneapolis, MN. pp. 670-671, April 20-25, 2002.

[3] Beck, K. and W. Cunningham, Using Pattern Languages for Ob-
ject-Oriented Programs. Technical Report CR-87-43, Tektronix,
Inc. 1987.

[4] Borchers, J., A Pattern Approach to Interaction Design. Chicester,
England: John Wiley & Sons. 268 pp., 2001.

[5] Budinsky, F.J., M.A. Finnie, J.M. Vlissides, and P.S. Yu, Automatic
Code Generation from Design Patterns. IBM Systems Journal, 1996.
35(2): pp. 151-171.

[6] Buyukkokten, O., H. Garcia-Molina, A. Paepcke, and T. Winograd,
Power Browser: Efficient Web Browsing for PDAs. CHI Letters:
Proceedings of Human Factors in Computing Systems: CHI 2000,
2000. 2(1): pp. 430-437.

[7] Calvary, G., J. Coutaz, and D. Thevenin. A Unifying Reference
Framework for the Development of Plastic User Interfaces. Proc.
Engineering for Human-Computer Interaction: EHCI 2001. To-
ronto, ON, Canada: Springer-Verlag. pp. 173-192, May 11-13,
2001.

[8] Eisenstein, J., J. Vanderdonckt, and A. Puerta. Applying
Model-Based Techniques to the Development of UIs for Mobile
Computers. Proc. International Conference on Intelligent User In-
terfaces: IUI 2001. Santa Fe, NM: ACM Press. pp. 69-76, January
14-17, 2001.

[9] Foley, J.D. and P.N. Sukaviriya. History, Results and Bibliography
of the User Interface Design Environment (UIDE), an Early
Model-Based System for User Interface Design and Implementa-
tion. Proc. Design, Specification and Verification of Interactive
Systems: DSV-IS'94. Carrara, Italy. pp. 3-14, June 8-10, 1994.

[10] Fox, A., I. Goldberg, S.D. Gribble, D.C. Lee, A. Polito, and E.A.
Brewer. Experience With Top Gun Wingman: A Proxy-Based
Graphical Web Browser for the 3Com PalmPilot. Proc. IFIP In-
ternational Conference on Distributed Systems Platforms and Open
Distributed Processing: Middleware '98. Lake District, UK, Sep-
tember 15-18, 1998.

[11] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Reading, MA: Addison-Wesley.
395 pp., 1995.

[12] Hong, J.I. and J.A. Landay, SATIN: A Toolkit for Informal
Ink-based Applications. CHI Letters: Proceedings of User Inter-
faces and Software Technology: UIST 2000, 2000. 2(2): pp. 63-72.

[13] Hussey, A. and D. Carrington, Using Patterns in Model-based
Design. Technical Report 99-15, Software Verification Research
Centre, School of Information Technology, University of Queen-
sland, Queensland, Australia, March 1999.

[14] Klemmer, S.R., A.K. Sinha, J. Chen, J.A. Landay, N. Aboobaker,
and A. Wang, SUEDE: A Wizard of Oz Prototyping Tool for
Speech User Interfaces. CHI Letters: Proceedings of User Inter-
faces and Software Technology: UIST 2000, 2000. 2(2): pp. 1-10.

[15] Lewis, C. and J. Rieman, Task-Centered User Interface Design: A
Practical Introduction. Boulder, CO: University of Colorado, 1993.
ftp://ftp.cs.colorado.edu/pub/cs/distribs/clewis/HCI-Design-Book/

[16] Lin, J., M.W. Newman, J.I. Hong, and J.A. Landay, DENIM:
Finding a Tighter Fit Between Tools and Practice for Web Site
Design. CHI Letters: Proceedings of Human Factors in Computing
Systems: CHI 2000, 2000. 2(1): pp. 510-517.

[17] Lin, J., M. Thomsen, and J.A. Landay, A Visual Language for
Sketching Large and Complex Interactive Designs. CHI Letters:
Proceedings of Human Factors in Computing Systems: CHI 2002,
2002. 4(1): pp. 307-314.

[18] Lopez, J.F. and P. Szekely, Web Page Adaptation for Universal
Access, in Universal Access in HCI: Towards and Information So-
ciety for All (Proceedings of 1st International Conference on Uni-
versal Access in Human-Computer Interaction, New Orleans, LA,

August 8-10, 2001), C. Stephanidis, Editor. Lawrence Erlbaum
Associates: Mahwah, NJ. p. 690-694, 2001.

[19] Meijler, T.D., S. Demeyer, and R. Engel. Making Design Patterns
Explicit in FACE, a Framework Adaptive Composition Environ-
ment. Proc. European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering:
ESEC/FSE '97: Springer-Verlag LNCS 1301. pp. 94-110, 1997.

[20] Menkhaus, G. and W. Pree. User Interface Tailoring for
Multi-Platform Service Access. Proc. International Conference on
Intelligent User Interfaces: IUI 2002. San Francisco, CA. pp.
208-209, January 13-16, 2002.

[21] Mynatt, E.D. and W.K. Edwards. An Architecture for Transforming
Graphical Interfaces. Proc. ACM Symposium on User Interface
Software and Technology: UIST '94. Marina del Rey, California. pp.
39-47, November 2-4, 1994.

[22] Nichols, J. Informing Automatic Generation of Remote Control
Interfaces with Human Designs. Proc. Human Factors in Comput-
ing Systems: CHI 2002 Extended Abstracts. Minneapolis, MN. pp.
864-865, April 20-25, 2002.

[23] Olsen, D.R., S.E. Hudson, R.C.-M. Tam, G. Conaty, M. Phelps, and
J.M. Heiner. Speech Interaction with Graphical User Interfaces.
Proc. IFIP TC.13 Conference on Human Computer Interaction:
INTERACT2001. Tokyo, Japan: IOS Press, 2001.

[24] Paternó, F., Model-Based Design and Evaluation of Interactive
Applications. Applied Computing, ed. R. Paul, P. Thomas, and J.
Kuljis. London: Springer-Verlag. 192 pp., 2000.

[25] Puerta, A. The Mecano Project: Comprehensive and Integrated
Support for Model-Based Interface Development. Proc. 1996 In-
ternational Workshop of Computer-Aided Design of User Inter-
faces: CADUI '96. Namur, Belgium: Namur University Press. pp.
19-36, June 5-7, 1996.

[26] Rational, Rational XDE Professional. Rational Software Corp.:
Cupertino, CA and Lexington, MA. http://www.rational.com/xde/

[27] Schreiber, S. Specification and Generation of User Interfaces with
the BOSS-System. Proc. East-West International Conference on
Human-Computer Interaction: EWHCI'94. St. Petersburg, Russia:
Springer-Verlag. pp. 107-120, August 2-6, 1994.

[28] Smith, I., Support for Multi-Viewed Interfaces, Unpublished Ph.D.
Dissertation, Georgia Institute of Technology, Atlanta, GA, 1998.

[29] Szekely, P., P. Luo, and R. Neches. Beyond Interface Builders:
Model-Based Interface Tools. Proc. Human Factors in Computing
Systems: INTERCHI '93. Amsterdam, The Netherlands: ACM
Press. pp. 383-390, April 24-29, 1993.

[30] Tidwell, J., Common Ground: A Pattern Language for Hu-
man-Computer Interface Design, 1999.
http://www.mit.edu/~jtidwell/common_ground.html

[31] van Duyne, D.K., J.A. Landay, and J.I. Hong, The Design of Sites:
Addison-Wesley, 2002.

[32] van Welie, M. and H. Trætteberg. Interaction Patterns in User
Interfaces. Proc. Seventh Pattern Languages of Programs Confer-
ence: PLoP 2000. Monticello, Illinois, August 13-16, 2000.
http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/Welie/Welie.pdf

[33] Wagner, A., Prototyping: A Day in the Life of an Interface De-
signer, in The Art of Human-Computer Interface Design, B. Laurel,
Editor. Addison-Wesley: Reading, MA. p. 79-84, 1990.

[34] Wiecha, C., W. Bennett, S. Boies, J. Gould, and S. Greene, ITS: A
Tool for Rapidly Developing Interactive Applications. ACM
Transactions on Information Systems, 1990. 8(3): pp. 204-236.

[35] Zimmermann, G., G. Vanderheiden, and A. Gilman. Prototype
Implementations for a Universal Remote Console Specification.
Proc. Human Factors in Computing Systems: CHI 2002 Extended
Abstracts. Minneapolis, MN. pp. 510-511, April 20-25, 2002.

	Introduction
	Related Work
	Model-Based UI Tools
	Tool Support for Patterns
	Combining Models and Patterns
	User Interface Transformation Tools

	Overview of Damask’s approach
	Damask’s Proposed User Interface
	Creating Multi-device Interfaces
	Managing Consistency in Multi-device Interfaces
	Creating Custom Patterns

	Next Steps
	Survey of Existing Multi-device UI Design Practices and Design Patterns
	Prototyping and Building Damask
	Evaluation

	Summary
	References

