
A Visual Language for a Sketch-Based UI Prototyping Tool

James Lin
Group for User Interface Research, Computer Science Division

University of California, Berkeley
Berkeley, CA 94720-1776 USA

+1 510 643-7354
jimlin@cs.berkeley.edu

ABSTRACT
We describe the design of the visual language for SILK
2.0, a sketch-based tool for prototyping user interfaces. The
new SILK visual language has been designed to allow user
interface designers to quickly prototype the behavior of a
user interface. This includes behavior that depends on the
state of certain UI elements and the ability to create
“sketchy” components to be reused in other sketches.

Keywords
User interfaces, design, prototyping, sketching, visual
language, SILK, informal interfaces

INTRODUCTION
SILK [1] is a sketch-based user interface design tool that
combines the traditional strengths of the computer with the
speed of paper-based sketching. The designer sketches
various states of the user interface, to specify the behavior
of the interface. The sketches are assembled together into a
storyboard [2]. By drawing a transition arrow from a user
interface object in one sketch to another sketch, the
designer says that, in the user interface, if the user clicks on
the object, the program will transition to the screen shown
at the end of the arrow (see Figure 1).
At any time, designers can switch SILK into Run Mode. At
this point they can interact with their sketches, like a real
program, in another window separate from the storyboard
window. The sketch behaves as specified by the
storyboard.
The storyboarding mechanism constitutes a visual
language, which is too simple for sophisticated programs.
The only type of interaction supported is single clicking the
left mouse button. There are no conditional transitions; a
transition cannot depend on the state of other UI elements
in the panel. It is difficult to reuse parts of storyboards in
other storyboards, and SILK does not allow designers to
design their own widgets, a desire that was expressed in
earlier studies [1].
We have extended SILK’s visual language to address these
issues, while keeping the language accessible to non-

programmers and maintaining the rapid prototyping
qualities that SILK’s sketch-based interface makes
possible.

INTERVIEWS WITH UI DESIGNERS
To help us decide how to design the extensions, we
interviewed eight designers of graphical user interfaces in
industry. We discussed the design cycle and if and how the
designers use sketches. If time permitted, we also presented
our design ideas for SILK to get feedback.
All of the designers used sketches to design basic screen
layout. Often, all of the sketches on a sheet of paper dealt
with only one particular screen layout. Navigation was
described either through callouts from individual sketches
or by a walk-through, where the designer assembles a
sequence of sheets, each with a sketch of a screen, that
shows what the user would see as he or she does particular
tasks. Sketching the user interaction with SILK-like
storyboarding, i.e. drawing arrows between the sketches,
was only done if the interaction was particularly complex.
Two designers used graphs or trees to show how different
parts of the user interface were related to each other. The
nodes of the graph were simply phrases or very rough
sketches describing the screen configuration. Only overall
structure, as opposed to all possible navigation, was
diagrammed. On the other hand, two other designers did
not diagram any interaction because they said it would take
too much time.
Due to time constraints, we were able to show several
design variations for SILK to only five of the eight
designers. Four of them were enthusiastic about the basic
idea of SILK, and their feedback helped us decide on the
designs we describe in the next section. One designer did
almost no sketching with pen and paper; he used a vector-
based drawing tool instead. He did not believe SILK would
be an improvement over his existing design process.

EXTENDING THE VISUAL LANGUAGE
Based on feedback from the designers, we have introduced
the following elements into SILK’s visual language.

Support for More Event Types
SILK has been extended to support certain types of events
other than single clicking the left mouse button, such as
timer, simple animation, and double clicking. Designers
choose what type of event they want to specify in a tool
palette before drawing the storyboard arrow. Figure 1

shows an early prototype of this tool palette. Sound events
could also be specified in this manner.

Figure 1. A storyboard window in SILK with more event types.
The arrows pointing left and right represent left single click, and
the arrow pointing down represents right single click. In the
prototype, the arrows are different colors.

The following new language features are in the process of
being implemented.

Conditional Transitions
Conditional transitions are represented by multiple
storyboard panels. Each panel displays the condition that
must be satisfied before the transition can occur. The
conditional panels are surrounded by a sketched brown
box. Figure 2a shows an example of a conditional
transition. Inside a conditional panel, ovals surround the
user interface objects whose state must match what is
shown for the corresponding transition to occur.

Figure 2. a) A storyboard fragment with a conditional transition.
b) The conditional panel collapsed into a stack.

If there are many conditions, the panels can take up a lot of
space, making the storyboard cumbersome to use. To
address this problem, the conditional panels can be
collapsed into a stack of panels, as shown in Figure 2b.
This gives designers an overall view of the structure of the
storyboard, without burdening them with unnecessary
details. If they want to examine the details, they can expand
the stack. They can also cycle through the stack to see each
condition one at a time.

Components
Components allow designers to design their own “sketchy”
widgets that can be used in other SILK designs. Internally,
components are defined in the same way as normal
programs—through a storyboard. Components are
surrounded by a sketched blue box. The distinguishing
factor is that components can have input parameters and
external events. An example of a component, which
encapsulates a wizard, is shown in Figure 3.

Figure 3. A component in SILK

A transition leaving the component boundary defines an
external event. Components can define their own named
events that are at a higher level than simple interaction. The
component in Figure 3 defines two events, cancel and
done. This component can now be reused in different
storyboards, as shown in Figure 4.

Figure 4. Using a component in SILK

FUTURE WORK
There are more outstanding issues in SILK that we would
like to address. If the designer tries to completely specify a
complex user interface, the number of panels in the
storyboard grows exponentially, as does the number of
arrows between the panels. The “exponential growth”
problem is similar to that of finite-state machines.
We are looking into a number of ideas to address this
problem. One idea, inspired by the interviews, is to overlay
a tree structure on top of the storyboard. Panels in the tree
would inherit behavior from ancestor panels. The tree
would also serve to represent the overall structure of the
user interface. Another idea is to generalize the
storyboarding mechanism into multiple mini-storyboards.
Each mini-storyboard would have a precondition that
would need to be met before executing.

CONCLUSION
A user interface design tool with a sketch-based interface
allows designers to rapidly brainstorm, develop, and iterate
ideas for user interface designs. By adding support for
reusable sketchy components, conditional transitions, and
more sophisticated types of user interaction, we hope to
encourage designers of user interfaces to use SILK and
enjoy the benefits of sketching in all phases of UI design.

REFERENCES
1. Landay, James A. Interactive Sketching for the Early

Stages of User Interface Design. Ph.D. dissertation,
Report #CMU-CS-96-201, Computer Science
Department, Carnegie Mellon University, Pittsburgh,
PA, December, 1996.

2. Landay, James A. and Brad A. Myers. Sketching
Storyboards to Illustrate Interface Behaviors. In CHI 96
Conference Companion: Human Factors in Computing
Systems, Vancouver, BC, Canada, April 1996

http://www.cs.berkeley.edu/~landay/research/publications/Thesis.pdf
http://www.cs.berkeley.edu/~landay/research/publications/Thesis.pdf
http://www.cs.berkeley.edu/~landay/research/publications/CHI96/short_storyboard.html
http://www.cs.berkeley.edu/~landay/research/publications/CHI96/short_storyboard.html

	ABSTRACT
	Keywords

	INTRODUCTION
	INTERVIEWS WITH UI DESIGNERS
	EXTENDING THE VISUAL LANGUAGE
	Support for More Event Types
	Conditional Transitions
	Components

	FUTURE WORK
	CONCLUSION
	REFERENCES

