
A Visual Language for Sketching
Large and Complex Interactive Designs

James Lin 1, Michael Thomsen 2, James A. Landay 1

1 Group for User Interface Research
Computer Science Division

University of California
Berkeley, CA 94720-1776, USA

{jimlin, landay}@cs.berkeley.edu

2 Department of Computer Science

University of Aarhus
Aabogade 34

8200 Aarhus N, Denmark
miksen@daimi.au.dk

ABSTRACT
Informal, sketch-based design tools closely match the
work practices of user interface designers. Current tools,
however, are limited in the size and complexity of interac-
tion that can be specified. We have created an advanced
sketch-based visual language that allows for easy proto-
typing of large, complex interactive designs. In its current
embodiment in the DENIM web design tool, the visual lan-
guage allows designers to sketch reusable components for
recurring page elements, such as navigation bars, as well
as conditionals to illustrate and test transitions that depend
on a user’s input. Designers can also specify sites that
accept richer user input than simple clicking. Our infor-
mal evaluation shows that these features allow designers
with little programming experience to quickly create pro-
totypes of large, complex web sites while still working
inside an informal, sketch-based environment.
KEYWORDS
Visual language, DENIM, user interface design, web design
INTRODUCTION
Designers of web sites typically go through a process of
progressive refinement [12]. They tend to think about the
larger picture, such as the overall site architecture, early
on, and then progressively focus on finer details, such as
the specific look of page elements, typefaces, and colors.
The design process often includes rapid exploration early
on, with designers creating many low-fidelity sketches on
paper. There are several benefits of sketching during this
phase of design. Sketches are inherently ambiguous,
which allows the designer to focus on basic structural
issues instead of unimportant details. The ambiguity also
allows multiple interpretations of the sketch, which can
lead to more design ideas [3]. Sketching is quick, so de-
signers can rapidly explore different ideas and iterate on
those ideas. In addition, user tests using rough prototypes
tend to find the same usability problems as do tests with
more finished prototypes [7, 17].
A few computer-based web site and user interface design

tools offer the benefits of sketching by using it as their
primary interaction technique. These tools include DENIM
[10] (see Figure 1) and SILK [9]. DENIM and SILK also al-
low the designer to specify interface behavior through
storyboarding, where the designer draws arrows from one
page to another to denote page transitions.
However, using these tools to create prototypes of larger
and more complex interfaces is cumbersome. If a designer
wants every page to have a navigation bar at the top, for
example, the designer must redraw the navigation bar and
link its contents on every page. Needing to redefine com-
mon elements like this leads to an explosion of pages and
arrows, which becomes hard to manage. Also, a page
transition in DENIM and SILK cannot depend on the state of
other interface elements in the page, such as whether a
check box is checked, making it difficult to create proto-
types with this common type of behavior.
After several design iterations, we have created a visual
language, employing a sketching metaphor, which ad-
dresses these problems. The target audience of the lan-
guage is designers, who are not likely to know program-

Figure 1. DENIM displaying a sketch of five web pages

and six transition arrows.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2002, April 20-25, 2002, Minneapolis, Minnesota, USA.
Copyright 2001 ACM 1-58113-453-3/02/0004…$5.00.

ming, but who nevertheless wish to prototype large, inter-
active designs during the early stages of design. The lan-
guage uses pages and arrows to represent simple inter-
faces, like in DENIM and SILK, but it also includes compo-
nents, which allow designers to reuse storyboard frag-
ments, enhanced arrows, which allow for more event
types, and conditionals, which allow page transitions to
depend on the state of interface elements in a page. We
have implemented it within a new version of DENIM1. The
visual language can be applied to areas other than web
design, such as desktop graphical user interface design.
The rest of the paper is organized as follows. First, we
discuss work related to the visual language. Next, we give
an overview of DENIM and describe the core functionality
that lays the foundation for the visual language. Follow-
ing this is a discussion of the visual language itself in de-
tail. A brief discussion of the implementation follows.
Next we describe our evaluation of the language, and fi-
nally we describe our future work and conclusions.
RELATED WORK
There is work related to the visual language in the areas
of storyboarding, components, and conditionals.
Storyboarding
Storyboards illustrate interactive behaviors by showing
what the user interface looks like before and after an end-
user event occurs. Besides SILK and DENIM, other design
systems that use storyboarding include Anecdote [4] and
PatchWork [16]. These systems only support left click
events for a designer’s custom widgets, whereas our new
visual language supports several input events.
DEMAIS [1] is a system for prototyping multimedia appli-
cations. It allows designers to rapidly sketch out a story-
board of their design, add layers to their designs for easier
organization, and draw arrows between storyboard ele-
ments to denote interaction and timing. It does not have a
mechanism for packaging objects and behavior together
to be reused in other parts of the storyboard.
Chimera [8] and Pursuit [11] are programming-by-
demonstration systems based on a before-and-after comic
strip metaphor. These systems infer what action causes a
state transition from examples, while in our system the
designer states explicitly what user action causes a transi-
tion. We call this type of explicit specification program-
ming by illustration.
Components and Conditionals
As mentioned before, our visual language includes com-
ponents to support recurring page elements. Our design is
reminiscent of statecharts [5], an extension of finite state
machines. However, statecharts are more general, sup-
porting, for example, concurrency and message broadcast.
Since the user can only interact with one interface “state”

1 An earlier version of DENIM and videos demonstrating
the new visual language can be downloaded from:
 http://guir.berkeley.edu/denim

at a time, our components have no such concepts, and
hence our design is somewhat simpler and easier to use.
We have also created an innovative interface for specify-
ing and using components.
The visual language also includes conditionals, which
allow a transition between web pages to depend on the
state of other elements in the page. Our design was influ-
enced by rule-based visual programming languages such
as AgentSheets [14], Stagecast Creator [15], and KidSim
[2]. The foundation of such languages is a collection of if-
then rules. However, the design paradigms of our new
language and rule-based languages differ. A path that a
user can take through the interface has a direct visual rep-
resentation in a DENIM design as a path through a network
of web pages. In AgentSheets and Stagecast Creator, there
is no direct visual representation of a user’s path; the
closest representation would be a history of which rules
had been executed. Visual representations of conditionals
are easier for novices to use [13].
DENIM
As mentioned above, we have implemented the new
visual language within DENIM, an electronic tool for the
early stages of web site design. DENIM supports sketching
input, allows design using three different representations,
and unifies the representations through zooming.
DENIM is part of our research on informal user interfaces.
Informal user interfaces support natural human input,
such as speech and writing, while minimizing recognition
and transformation of the input. These interfaces, which
document rather than transform, better support a user’s
flow state. Unrecognized input embraces nuanced expres-
sion and suggests a malleability of form that is critical for
activities such as early-stage design2.
Since DENIM was designed with a pen interface in mind,
we use pen-based terms for describing the interaction
between the designer and DENIM. For example, tapping
means to tap the pen onto the digitizing tablet. This corre-
sponds to clicking the primary button on a mouse.
DENIM has one window (see Figure 1) with three main
areas. The center area is a canvas where the user creates
web pages, sketches the contents of those pages, and
draws arrows between pages to represent their relation-
ship to one another. On the left is a slider that is used to
set the current zoom level. The bottom area is a toolbox
that holds tools for drawing, panning, erasing, and creat-
ing and inserting reusable components.
Instead of pull-down menus, DENIM uses techniques
geared towards pen interaction. Pie menus are used for
executing commands. Alternatively, pen gestures can be

2 Given DENIM’s focus on the early stages of design, the

designer’s raw sketches are left rough. Once the site de-
sign is finished, the final code for the site is produced
using traditional tools.

used for quickly executing the most common commands,
such as copying, pasting, and panning.
Designers test out the interaction of their designs in
DENIM’S Run mode. Opening a pie menu over a page and
selecting File→Run opens a separate DENIM browser win-
dow with the page loaded. The designer can navigate
through the site design exactly like in a web browser,
clicking on links and using the Back and Forward buttons.
THE FOUNDATION OF THE VISUAL LANGUAGE
Our visual language has its foundation in two of DENIM’s
core concepts: pages and arrows.
Pages represent the web pages in a site. A page consists of
two parts: a label describing the page, and a sketch repre-
senting the physical appearance of the web page (see
Figure 2a). A designer can sketch or type in a page.
An arrow between two pages represents a relationship
between those pages (see Figure 2b). To create one, the
designer draws a stroke between two pages. If an arrow
starts from a particular item in a page, such as a word,
image, or button, then the source of the arrow becomes
blue, like a hyperlink in a web page. Furthermore, in Run
mode, the user can click on the item to transition to the
destination page—the source of the arrow is a hyperlink.
THE VISUAL LANGUAGE’S ADVANCED FEATURES
Using pages and arrows, designers can fully describe a
simple web site consisting solely of web pages and hyper-
links. However, these basic constructs are not sufficient
for more advanced sites.
An Example Scenario of an Advanced Design
Consider a designer of a shopping web site who is proto-
typing the checkout procedure. The designer wants to
prototype the following behavior:
• The checkout page presents a shopper with the cur-

rent contents of her shopping cart, two check boxes
for optional Gift Wrapping and Gift Card, and a Next
button (see Figure 3).

• If she checks neither Gift Wrapping nor Gift Card,
then clicking Next takes her to the shipping page.

• If she checks only Gift Wrapping, then she will be
taken to a page for selecting the theme of the wrap-
ping (e.g., birthday, graduation, or sympathy).

Figure 3. The Checkout page for an e-commerce site.

Figure 2. a) A DENIM page with the label “Home” b) An arrow,

whose source is a blue hyperlink, “Business.”

• If she checks only Gift Card, then a page for select-
ing the theme and text of the card will be next.

• Finally, if she selects both Gift Wrapping and Gift
Card, then she will be taken to a page that only
shows those themes for which there are appropriate
matching wrapping and cards.

• Clicking Next in any of the gift card or gift wrapping
pages leads to the shipping page.

• Additionally, if the user does not make any selection
in the checkout page within five minutes, then the
session will timeout for security purposes, and the
browser will transition automatically to a login page.

If the designer tries to create an interactive prototype of
this design using only pages and arrows, he or she would
encounter several problems.
• To simulate the behavior of the check boxes, the de-

signer would have to draw four pages, one for each
possible combination of check box states. The de-
signer would also have to draw arrows from a
checked box to an unchecked box for each of the

Figure 4. Combinatorial explosion: transitions depending on two

states leads to four pages and eight arrows.

check boxes. As illustrated in Figure 4, this leads to
combinatorial explosion, where two check boxes lead
to eight arrows and so on, a “visual spaghetti” that is
clearly not desirable.

• If the designer wanted to use check boxes elsewhere,
he would have to redraw this complex sequence
again, which is time consuming and error prone.

• Since there is no way to specify page transitions on
anything other than a left-click event, prototyping the
automatic timeout transition is impossible.

We have overcome these problems while still maintaining
the sketching paradigm. By sketching out components,
the designer can create recurring elements like a check
box. By using conditionals and components, the designer
can avoid the combinatorial explosion of explicitly defin-
ing all combinations. By using enhanced arrows, the de-
signer can show page transitions that trigger on events
other than simple left-clicks, such as timeouts. These
powerful language features are discussed in detail below.
Components
Components provide a mechanism for the designer to
create and use reusable widgets and fragments of interface
designs. There are two types of components in DENIM:
intrinsic and custom. Intrinsic components are standard
widgets or page elements built into the visual language.
Currently, we have implemented text fields, but we plan
to add more intrinsic components, such as buttons, radio
buttons, and scroll bars. Custom components differ from
intrinsic components in that they are defined by designers,
allowing them to create their own “building blocks.”
Inserting a Component Instance
Every component has a “rubber stamp” tool associated
with it (see Figure 5). Each rubber stamp has the name of

the component or an icon that represents what the compo-
nent looks like. The one plain rubber stamp is used for
creating custom components.
To insert an instance of a component into the design, the
designer picks up the component’s stamp and then taps on
the desired location in the design (see Figure 6).
Once the component instance has been inserted, the de-
signer can make adjustments to it, such as changing its
position by dragging it, or changing its initial state by
opening a menu on the instance.
Custom Components
As we stated above, designers can create their own com-
ponents for reusable page elements. For simplicity, cus-
tom components are completely self-contained—instances
of custom components cannot know about or refer to
other component instances used within the same page.
Although this limits the expressive power of custom com-
ponents, we do not believe this is a serious limitation in
the context of low-fidelity prototyping.
In our example, the designer can create a custom check
box component for his checkout pages. This involves the
following steps:
1. First, the designer draws two small pages: one show-

ing the checkbox unchecked, and one showing it
checked. He then draws an arrow representing a left
click transition from the page with the unchecked box
to the page with the checked box and vice versa.

Figure 5. Rubber stamps for a text field intrinsic component,

check box custom component, and creating custom
components, respectively.

2. Next, he selects the pages by drawing a circle around
them while holding down the pen’s barrel button.

3. He then picks up the blank rubber stamp and taps the
selected pages to create the new component.

Figure 6. a) Inserting an instance of the text field com-

ponent into a page. b) The result.

4. The pages now disappear, and the designer is asked

Figure 7. Inserting an instance of the Check box component.

for the name of the component. A new rubber stamp
with that name is created and placed in the toolbox.

Figure 8. Changing the state of a check box

component instance.

The designer can now insert instances of this component
into his design. To do so, he picks up the check box stamp
and taps it in the canvas to stamp instances of the compo-
nent (see Figure 7). The designer can also use a menu to
change the state of a check box (see Figure 8).
When the designer interacts with his design in Run mode,
the check boxes will check and uncheck when clicked, as
defined by his check box component.
Editing a Component
The designer can edit a custom component by opening a
separate pane containing the component’s definition (see
Figure 9).
For example, suppose the designer decides to use Macin-
tosh-style check boxes that have an X for the checked
state instead of a check mark. To do this, the designer
brings up the component pane, erases the check mark,
draws an X, and then closes the pane. This illustrates an-
other advantage of using custom components: this
changes the appearance of all instances of this component
throughout the design automatically.
Creating Global Transitions
There are also cases in which a designer wants all in-
stances of a custom component to always transition to a
specific page in the design after a certain event. In the

case of our example design, consider adding a navigation
bar to each checkout page, where clicking on “Cart” in
the navigation bar would bring the user back to the first
checkout page, and clicking “Home” would take the user
to the home page. Drawing the navigation bar on each
page would lead to an unmanageable number of arrows.

Figure 10. A navigation bar component with out-
going arrows (top), and four pages with instances

of the component.

Instead, the designer uses components with global transi-
tions. First, he draws a navigation bar and makes a com-
ponent. He then opens the definition pane for the naviga-
tion bar component, and draws outgoing arrows from the
component definition to specific pages outside of the
component pane. For example, Figure 10 shows the navi-
gation bar component with global transitions to the home
page and the first checkout page.
Notice that no arrows are needed from any individual
instance of the navigation bar component. Because of the
component’s definition, clicking on “Cart” in Run mode
will take the end-user from any page with the navigation
bar back to the first page of the checkout process.
Handling Conditional Transitions

Figure 9. The component pane allows editing the

definition of a custom component.

While components solve some of the designer’s problems
in the checkout scenario, we still have not completely
solved the problem of “spaghetti-style” links, which
plagued the initial checkout page design (see Figure 4).
The first Checkout page (see Figure 3) contains the cart
contents, two check boxes, and a “Next” button. The de-
signer would like to link each of the four check box com-
binations to the appropriate pages in a clearer way.
The designer also needs a way to specify transitions that
depend on the state of component instances, such as the
two check boxes. Conditionals address these issues.
1. To make the checkout page a conditional, the de-

signer opens the pie menu on the page, and selects
Page→Add New Condition.

2. The page becomes a stack of conditions, initially
holding two conditions. A bar appears at the top of
the page showing which condition the designer is ed-
iting. The designer needs four conditions (two states
raised to the power of two component instances). He
uses the pie menu two more times, resulting in a con-
ditional stack with four conditions.

3. The designer now needs to specify the state of the
check boxes in each of the conditions. To switch the
condition that the designer is editing, the designer
simply taps on the left or right arrow in the bar above
the stack. In this example, he goes to the second con-
dition, and toggles the state of the first check box,
then goes to the third condition and toggles the state
of the second check box, and so on.

4. With each of the four conditions specified, the de-

signer is ready to add the transitions. This task is
simplified by the fact that there is no need to add the
transitions that make each of the check boxes tog-
gle—since the check boxes are instances of a custom
component, this has already been specified. Only the
arrows from the “Next” button in each condition have
to be added. The designer goes through each of the
four conditions, drawing one outgoing transition from
the “Next” button to the appropriate page.

Conditionals relieve the designer of a lot of work, and the
resulting design is also much simpler to understand with-
out the spaghetti of arrows. As another added benefit,
making changes to the checkout page is also easy: a
change to the contents of one of the conditions in the
stack, for example, changing the word “Cart” to “Basket,”
is automatically reflected in every condition in the stack.

Figure 11. Arrow representing a double left-click.

In some cases, a conditional transition should not depend
on the total state of the origin page. In these cases, the
designer can specify with the pie menu which user inter-
face elements do not matter for evaluating a condition.
Enhanced Arrows
The last task for the designer in our scenario is to proto-
type automatic timeout on the Checkout page.
Originally, transition arrows represented clicking on a
link with the left mouse button. Arrows in our new visual
language can support other events common to desktop
and web user interfaces, such as double-clicking and roll-
overs. Enhanced arrows display the type of event they
represent near the source of the arrow (see Figure 11).
Enhanced arrows are drawn like normal arrows (see
Figure 12a), except when the designer reaches the
destination of the arrow, she does not lift up the pen.
After a short delay, a pie menu opens with the events that
the source of the arrow can handle (see Figure 12b). The
designer then taps the desired event type. Normal arrows
still represent a single click of the left mouse button.
Currently, the events that enhanced arrows support in-
clude single-clicking and double-clicking with either
mouse button, mouse enter and mouse exit for rollover
effects, and timers that lead to a new page after a certain
amount of time after the first page is loaded.
Using a timer, a designer can easily prototype the timeout
page in our checkout scenario: he simply draws an en-
hanced arrow from the first checkout page to a timeout

Figure 12. a) Drawing an enhanced arrow.

b) Selecting the event type of the arrow.

page, selects Timer in the menu, and then enters a value
of 300 seconds in the property box that appears.
ITERATIVE DESIGN AND EVALUATION
After the initial design, but before the full implementa-
tion, we performed a brief, informal study on the visual
language. The study had six participants. Three of them
were professional user interface designers with moderate
to advanced programming ability, and the other three
were computer science undergraduates at UC Berkeley
who were taking a human-computer interaction course.
After a short introduction to the visual language, we gave
them several interface design tasks and asked them to do
these tasks on paper. Overall, the informal study validated
our design, and thus motivated us to implement the visual
language additions.
Evaluation
To evaluate the final design, we performed an informal
task-based, usability test. The participants were intro-
duced to DENIM and the visual language, and then asked to
create elements of a simple e-commerce site.
Participants
There were a total of four research participants, two males
and two females, from 26 to 31 years in age. All were
final year master’s students majoring in Information Sci-
ence or Multimedia Design at the University of Aarhus.
They were chosen to have backgrounds similar to profes-
sional web designers. According to pre-study question-
naires, they all had extensive knowledge of various draw-
ing tools such as Adobe Photoshop but “little” or no
knowledge of programming.
Apparatus and Procedure
The subjects performed the study on a 700 MHz Pentium
III PC with Windows 2000, a 21″ CRT color screen
(1280×1024 resolution) for output, and a Wacom Intuos
A4 regular tablet with both pen and mouse for input.
Each subject started out by filling out an informed con-
sent form and a pre-study questionnaire. They were then
allowed to use Microsoft Paint with the tablet for about 5–
10 minutes to acquaint themselves to this input device.
Next, they were introduced to basic DENIM interaction
followed by task 1 (see below). Then they were given a
two-page description of the visual language, which the
experimenter guided the participant through for five min-
utes to accelerate the learning process. After this they
were asked to complete tasks 2 through 4.
Tasks
The tasks centered on the goal of prototyping a site selling
products for household pets. Task 1 involved creating the
pages Index, Dog products, Shopping basket, and Order
confirmation with initial content and links in between.
The task was designed to teach the participants basic vis-
ual language functionality, and to provide a basis for the
following tasks. Task 2 involved adding an Include gift
card option and was designed to test their understanding
of components (in this case, creating a check box compo-
nent). Task 3 involved adding a Choose gift card page

and was designed to test if they were able to add a condi-
tion to the Shopping basket page and then link to the cor-
rect pages. Finally, task 4 asked them to add a timeout
security feature, and was designed to test their under-
standing of enhanced arrows.
Results
All four participants completed all four tasks in 20 to 30
minutes3. Two completed them without any help, whereas
the other two were offered a little help (e.g., “have you
looked in the manual” or “components should be created
on the background”), primarily when they got confused
because of bugs in the implementation. Given that the
participants had only five minutes of training and no pro-
gramming experience, we find these results impressive.
The post-study questionnaires indicated that two users
were moderately happy with the system, whereas the two
others were very happy and gave comments like: “It
seems much more informal, but you still have all the func-
tionality,” “I feel like I [can] focus more on the design,”
“better than paper and pencil!” and “intuitive construc-
tion of interactivity.” These comments suggest that the
subjects found the tool useful and especially liked the
informal style of interaction.
Problems encountered during the evaluation were mostly
due to programming bugs, but two design problems were
also discovered: two participants wanted to be able to
create a component “in place” on a page, and another two
suggested that the number of conditions that a conditional
initially has should be determined by the number of pos-
sible component states. Finally, three subjects complained
that the Wacom tablet was hard to use.
IMPLEMENTATION
We implemented the visual language within a new ver-
sion of DENIM, which is built with the Java 2 SDK version
1.3, using SATIN [6], a toolkit for building informal, pen-
based applications. Most of the implementation details are
pretty standard, so here we only discuss the implementa-
tion of components, conditionals, and events.
There are two base classes that form the heart of the com-
ponent subsystem. DenimComponent represents the defi-
nition of a component. DenimComponentInstance
represents a usage of a component, which is created when
a designer stamps with a component’s rubber stamp. All
DenimComponents have a list of events, such as right-
click and left double-click, that their corresponding Den-
imComponentInstances listen to in Run mode.
When an arrow of a particular event type is drawn from a
DenimComponentInstance within one page to another,
DENIM associates the event type and the current condition

3 During the execution of one test, one participant acci-

dentally selected “Quit” in a menu and exited the sys-
tem. The experimenter recovered by quickly redrawing
part of his design, and then continued the test.

of the page with the destination page in the event table of
the DenimComponentInstance.
When the user interacts with a design in Run mode, an
event within a DenimComponentInstance is handled by
detecting the page’s current condition and looking up the
associated destination in the component instance’s event
table, and replacing the contents of the browser window
with the destination page.
FUTURE WORK
We have designed but have not yet implemented a few
additional aspects of the visual language. We plan to im-
plement the following features soon.
Text Variables
Currently, there is no way for a value that an end-user
inputs into a text field to be used in other pages. We have
designed a mechanism in which the designer can give a
name to a text field, and then insert the name in other
pages. At run time, the name would be replaced by the
contents of the text field with that name.
Page Masters
Pages within a web site often use the same general layout,
such as a logo in the top left corner. Currently, there is no
easy way of specifying this. Designers should be able to
create and edit page masters in a manner similar to creat-
ing and editing components. These could then be used as
templates when creating a new page, or they could be
applied to existing pages to allow designers to experiment
with various layout alternatives.
CONCLUSION
Our visual language includes advanced concepts that are
necessary for designing large, interactive web sites and
user interfaces. Components reduce the complexity and
“visual spaghetti” of large designs by letting the designer
define and reuse common interface elements. Condition-
als allow the designer to specify transitions that depend
on user behavior. Enhanced arrows allow the designer to
specify user behavior besides simple clicking. All of this
is accomplished using a familiar sketching metaphor,
enabling designers to keep the benefits of informal repre-
sentations along with the advantages of electronic tools.
The visual language allows interface designers to proto-
type sophisticated interfaces for more advanced and larger
sites, facilitating evaluations of these at an earlier stage.
Finally, the design of the visual language is a good fit for
the original audience of DENIM, web site designers with
little or no programming background, and, as we have
successfully evaluated, is directly usable after even very
little training.
ACKNOWLEDGEMENTS
Thanks to Jason Hong and Orna Tarshish for helping us
with DENIM and SATIN, and Qualcomm for their financial
assistance of this work. Also thanks both to Anoop Sinha,
who coined the term programming by illustration, and
Francis Li for their valuable comments on this paper.

REFERENCES
1. Bailey, B.P., J.A. Konstan, and J.V. Carlis. DEMAIS: Design-

ing Multimedia Applications with Interactive Storyboards. In
Proceedings of ACM Multimedia 2001. Ottawa, Canada. pp.
241-250, Sept. 30-Oct. 5, 2001.

2. Cypher, A. and D.C. Smith. KidSim: End User Programming
of Simulations. In Proceedings of Human Factors in
Computing Systems: CHI '95. Denver, CO. pp. 27-34, May 7–
11, 1995.

3. Goel, V., Sketches of Thought. Cambridge, MA: The MIT
Press. 279, 1995.

4. Harada, K., E. Tanaka, R. Ogawa, and Y. Hara. Anecdote: A
Multimedia Storyboarding System with Seamless Authoring
Support. In Proceedings of ACM International Multimedia
Conference 96. Boston, MA. pp. 341-351, November 18-22,
1996.

5. Harel, D., Statecharts: A Visual Formalism for Complex Sys-
tems. Science of Computer Programming, 1987. 8(3): pp. 231-
274.

6. Hong, J.I. and J.A. Landay, SATIN: A Toolkit for Informal
Ink-based Applications. CHI Letters: Proceedings of User In-
terfaces and Software Technology: UIST 2000, 2000. 2(2): pp.
63-72.

7. Hong, J.I., F.C. Li, J. Lin, and J.A. Landay. End-User Percep-
tions of Formal and Informal Representations of Web Sites. In
Proceedings of Human Factors in Computing Systems: CHI
2001 Extended Abstracts. Seattle, WA. pp. 385-386, March 31-
April 5, 2001.

8. Kurlander, D. and S. Feiner, A History of Editable Graphical
Histories, in Watch What I Do: Programming by Demonstra-
tion, A. Cypher, Editor. MIT Press. pp. 405-413, 1993.

9. Landay, J.A. and B.A. Myers, Sketching Interfaces: Toward
More Human Interface Design. IEEE Computer, 2001. 34(3):
pp. 56-64.

10. Lin, J., M.W. Newman, J.I. Hong, and J.A. Landay, DENIM:
Finding a Tighter Fit Between Tools and Practice for Web Site
Design. CHI Letters: Proceedings of Human Factors in Com-
puting Systems: CHI 2000, 2000. 2(1): pp. 510-517.

11. Modugno, F. and B.A. Myers, Graphical Representation and
Feedback in a PBD System, in Watch What I Do: Program-
ming by Demonstration, A. Cypher, Editor. MIT Press: Cam-
bridge, MA. pp. 415-422, 1993.

12. Newman, M.W. and J.A. Landay. Sitemaps, Storyboards, and
Specifications: A Sketch of Web Site Design Practice. In Pro-
ceedings of DIS 2000: Designing Interactive Systems. New
York, New York. pp. 263-274, August, 2000.

13. Pane, J.F. and B.A. Myers. Improving User Performance on
Boolean Queries. In Proceedings of Human Factors in Com-
puting Systems: CHI 2000 Extended Abstracts. The Hague, the
Netherlands. pp. 269-270, April 1-6, 2000.

14. Repenning, A. and W. Citrin. Agentsheets: Applying Grid-
Based Spatial Reasoning to Human-Computer Interaction. In
Proceedings of IEEE Symposium on Visual Languages
(VL’93). Bergen, Norway: IEEE Computer Society Press. pp.
77–82, September, 1993.

15. Stagecast, Stagecast Creator, 1997. Stagecast Software, Inc.
http://www.stagecast.com/

16. van de Kant, M., S. Wilson, M. Bekker, H. Johnson, and P.
Johnson. PatchWork: A Software Tool for Early Design. In
Proceedings of Human Factors in Computing Systems: CHI 98
Summary. Los Angeles, CA. pp. 221-222, April 18-23, 1998.

17. Virzi, R.A., J.L. Sokolov, and D. Karis. Usability Problem
Identification Using Both Low- and High-Fidelity Prototypes.
In Proceedings of Human Factors in Computing Systems: CHI
'96. Vancouver, BC, Canada. pp. 236-243, April 13–18, 1996.

http://www.stagecast.com/

	ABSTRACT
	KEYWORDS
	INTRODUCTION
	RELATED WORK
	Storyboarding
	Components and Conditionals

	DENIM
	THE FOUNDATION OF THE VISUAL LANGUAGE
	THE VISUAL LANGUAGE’S ADVANCED FEATURES
	An Example Scenario of an Advanced Design
	Components
	Inserting a Component Instance

	Custom Components
	Editing a Component
	Creating Global Transitions

	Handling Conditional Transitions
	Enhanced Arrows

	ITERATIVE DESIGN AND EVALUATION
	Evaluation
	Participants
	Apparatus and Procedure
	Tasks
	Results

	IMPLEMENTATION
	FUTURE WORK
	
	Text Variables
	Page Masters

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

