
End-User Programming of Mashups with Vegemite
James Lin1, Jeffrey Wong2, Jeffrey Nichols1, Allen Cypher1, and Tessa A. Lau1

1IBM Almaden Research Center
650 Harry Rd

San Jose, CA 95120 USA
{jameslin, jwnichols, acypher,

tessalau}@us.ibm.com

2Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15213 USA

jeffwong@cmu.edu

ABSTRACT
Mashups are an increasingly popular way to integrate data
from multiple web sites to fit a particular need, but it often
requires substantial technical expertise to create them. To
lower the barrier for creating mashups, we have extended
the CoScripter web automation tool with a spreadsheet-like
environment called Vegemite. Our system uses direct-
manipulation and programming-by-demonstration tech-
niques to automatically populate tables with information
collected from various web sites. A particular strength of
our approach is its ability to augment a data set with new
values computed by a web site, such as determining the
driving distance from a particular location to each of the
addresses in a data set. An informal user study suggests that
Vegemite may enable a wider class of users to address their
information needs.

Author Keywords
End-user programming, programming by demonstration,
mashup, data integration, automation, web

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Mashups are applications that combine functionality and
data from multiple web sites to help users solve tasks not
originally envisioned by the web site designers. Unfortu-
nately, constructing mashups typically requires program-
ming skill, which limits non-programmers to using mashups
that have been created by others. To address this problem,
designers and researchers are building tools that allow users
to create mashups without programming, with some suc-
cess. Often, the focus in these tools is on building mashups
that are robust to changes in their data sources and can be
reused by many users at some time in the future.

However, there is a whole class of ad hoc mashups, where
users want to quickly combine data from multiple web sites
in an incremental, exploratory fashion, often in support of a
one-time or infrequently performed task. In this case, the
collected data is the key artifact, not the code that extracted
or combined the data. Current mashup tools do not always
adequately support ad hoc mashups, because they encour-
age users to focus on the mashup’s code instead of the data.
In some cases, robustness and reuse are favored over help-
ing users perform their tasks.

To support end-user creation of mashups, we have extended
the CoScripter end-user programming system (formerly
Koala) [14] to allow users to collect and process data across
multiple web sites. Using this extension, called Vegemite
(see Figure 1), users start with an empty table, called a Veg-
eTable. Data can be manually entered into the VegeTable,
copied from an existing source like a spreadsheet, or ex-
tracted from an existing web page using our own direct-
manipulation tool. Users then demonstrate, through a series
of actions on the table and the web, how to fill additional
columns into the table. These actions are recorded into
scripts, which can be re-executed immediately for other
rows in the table and used later to refresh the data in the
table. For example, a user might create a script that uses
Yahoo! Maps to determine the driving distance between an
address stored in one column of the table and her place of
employment. This might be useful for prioritizing a list of
houses for sale based on the length of her commute. The
reusable script is created automatically simply by watching
the user demonstrate how to get the driving distance from
Yahoo! Maps based on the data in one row of the table.

The use of scripts is an important difference between Ve-
gemite and previous tools. Most existing mashup tools,
even those targeted at end users and for creating ad hoc
mashups, focus on one particular process: separately ex-
tracting tables of data from multiple web pages and joining
them together based on common values. Vegemite’s use of
scripts works best for a different process: collecting a table
of data from anywhere and then running scripts that add
columns to that table based on the data in each row.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’09, February 8–11, 2009, Sanibel Island, Florida, USA.
Copyright 2009 ACM 978-1-60558-331-0/09/02...$5.00.

Another key feature of Vegemite is that the scripts can do
more than just collect data. Vegemite scripts, like the Co-
Scripter scripts they are based upon, contain arbitrary low-

mailto:tessalau%7D@us.ibm.com

level web actions, such as clicking on links and entering
values into form elements. As a result, scripts can also be
used to perform actions based on values in the table. For
example, values in the table might be included in an e-mail
sent by a script that automates a web-based e-mail applica-
tion. We believe Vegemite is the first system that enables
end users to use programming-by-demonstration to both
aggregate data and perform web-based operations based on
the resulting data.

There are advantages and disadvantages to Vegemite’s
process. An important advantage is that scripts are created
and executed in the context of web browsing, which all
internet-savvy users already understand. Furthermore, Ve-
gemite supports a mixed-initiative interaction style, where
the system can automate portions of the browsing process
but allow the user to step in to fix errors as they occur. The
main disadvantage is that each script must be executed for
each row in the table, which can be time consuming, de-
pending on the number of rows in the table and the number
of steps in the script.

We begin by putting Vegemite in context with the large
body of work in the space of mashups. We then describe the
design of the Vegemite system, discuss its benefits and li-
mitations, and then describe a user study that we have con-
ducted with the system.

RELATED WORK
A key component of Web 2.0 technology has been the idea
that web data and tools should be made accessible through
standard web service APIs. Developers have capitalized on
this availability of data by combining multiple data streams
and making use of easily available visualization tools, such
as Google Maps. Although originally these mashups could
only be created by web-savvy developers, end-user tools
and platforms have begun to emerge that lower the barrier
to creating mashups. A comprehensive list of mashups and
tools can be found at http://programmableweb.com.

Mashup tools often focus on one or more of the following
tasks:
• Extracting data from existing data sources, such as

web pages, web services, and feeds.
• Aggregating, or “joining,” data from different sources

into a single data set. Data from each of the sources
needs to have at least one common field, such as the
name of a restaurant, so that records from one set can
be matched with their corresponding records in other
sets.

• Visualizing the data in a way that allows the user to
understand the aggregated data. Many mashups that
include geographic data, such as addresses, are visua-
lized using Google Maps.

Import data
button

VegeTable
editor

Main browser areaModified CoScripter sidebar

Current script

Currently
executing
script step

List of saved
VegeTables

Walk score about
to be added to
table

Create new script
button

Run button with
menu of table
scripts

Refresh table
button

New column
button

Select All button

Copy/paste
buttons for
table data

Figure 1. The Vegemite user interface.

Data extraction is a key feature for many existing mashup
tools, and the method of extraction is an important differen-
tiator among these tools. Some tools can only extract data
from structured data sources, such as web services, RSS
feeds, or documents annotated with RDF. Other tools work
with unstructured data sources, such as the human-readable
information on normal web pages. Vegemite is a member of
the latter category as it focuses on extracting data and ex-
ecuting operations on normal web pages.

Mash Maker [5] supports extraction, aggregation, and visu-
alization across web sites. Before an end user can extract
data from a web page, an extractor must be created for that
web page. The interface for doing so is mostly direct mani-
pulation but requires some technical expertise, such as un-
derstanding URL arguments and regular expressions. Mash
Maker’s user model is that expert users will create extrac-
tors and that other users will leverage them. In contrast,
Vegemite is designed around one user of low to moderate
skill that does both extraction and aggregation.

To combine two web sites that have extractors with Mash
Maker, end users extract data from one site by interactively
“copying” it, and then aggregating that data by “pasting”
the extracted data into the other site. Mash Maker guesses
how the data may relate based on the copy and paste opera-
tions that the user has performed, and provides an interface
that allows the user to correct any mistakes that the system
has made. Mash Maker uses a URL-based scheme for para-
meterizing the mashups that it creates. This means that the
pages that data is copied from must have an understandable
URL which Mash Maker can modify to make reasonable
queries for other values. In contrast, Vegemite scripts expli-
citly define the query in terms of the browser operations
that are required for a user to perform the query. This is
independent of the means that the web site uses to commu-
nicate its data, such as Ajax or HTTP POST requests that do
not include parameters in the URL.

Karma [19] lets users extract data from a web site into a
data table through demonstration. To extract data, users
visit a web page and click on the pieces of the page they
would like to extract, such as a restaurant name and ad-
dress. Karma uses an XPath generalization scheme to find
similar data on the same page and other related pages, and
then copies this data into a table. This extraction process is
similar, though more advanced, than Vegemite’s bulk data
extraction feature. Karma also keeps a repository of ex-
tracted data tables and can suggest relations between tables,
enabling data integration. Karma’s strength is in extracting
and combining tables of data from existing web sites, but it
does not support arbitrary operations on tables, such as ex-
ecuting queries based on a table or collecting data from
computations performed on the data in a table.

The SIMILE effort at MIT has several mashup projects, which
use both structured and unstructured data sources. Sifter
[10] and Solvent [18] are tools for end users to extract in-
formation from an unstructured HTML page into a structured

data table, through a point-and-click interface. Piggy Bank
[9] is a Mozilla Firefox extension that detects RDF data
within web pages, either embedded in the web page or
scraped via a Solvent screen scraper, and stores it so that the
user can interact with the structured data. Potluck [11] is a
tool for easily combining web pages with embedded struc-
tured data sets into a single set, with novel interaction tech-
niques for cleaning up and aligning data between sets. Like
Karma, these projects focus either on data extraction into
tables or joining data from multiple tables together. None of
these tools provides support for adding new values to their
data sets through computations performed on other web
sites.

Summaries, Relations, Cards, and Templates [3, 4] (SCRT) is
a framework for users to extract information from a web
site into a structured dataset, associate it with related data
from other web sites, and lay out the combined information
in a set of cards. This work also uses an XPath-based
scheme to extract data, much like Karma, Sifter, and our
own bulk data extraction method. A user who has collected
data with SCRT augments the set through the use of a search
engine on other sites that SCRT has already extracted data
from. This goes beyond previous work by supporting a par-
ticular kind of web query to expand the data set. However,
Vegemite goes further by supporting the use of any web
query that can be represented in our scripting language.

Other mashup tools often involve visual programming lan-
guages [16, 21, 22] or GUI assembly tools [7] where widgets
representing the different web sites or web services are laid
out on a web page and connected together with some pro-
gramming language. Another approach is to connect disem-
bodied forms of input fields of different web sites together
using formula languages from spreadsheets [5, 7]. In these
cases, the focus is on data aggregation, and extraction is
performed by pre-programmed code modules. Often the
data used by such tools is extracted from structured data
sources, such as RSS feeds and web services.

The user interfaces of these aggregation tools also create a
focus on the operations that aggregate data, rather than the
data itself. This focus can get in the way of the user’s goals.
For example, in a user study of the Marmite [21] mashup
system, users added operations to a dataflow. Each opera-
tion generated a table that showed the state of the data as it
was processed by the operation. Once the operation was
complete and the data appeared to have been processed
correctly, non-programmers discarded the operation be-
cause it had served its purpose. However, discarding the
operations also discarded the data, to the users’ surprise.
Users were more comfortable with using operations as tools
to transform the data rather than as steps in a process for a
computer to execute.

Most existing mashups are web sites that present users with
a web interface to data and services. These sites were de-
signed by programmers with the goal of being used repeat-
edly by many users. Many of these mashups can be thought

of as a search component coupled with a visualization ele-
ment that gives another view on the data. Creation tools for
these “dashboard-style” mashups (e.g., IBM Lotus Mashups
[12]) require users to lay out widgets representing the web
sites to be included in the mashup. For these tools, the focus
is on laying out widgets, not on the data itself.

A few tools have been created that allow users to use exist-
ing web sites as tools to perform computations. Clip, Con-
nect, Clone for the Web (C3W) [7] allows user to clip ele-
ments from existing web pages and use them together to
create useful combined applications. Unlike Vegemite,
C3W interfaces cannot be integrated with a data table or
automatically be applied to all rows of such a table.

Transcendence [1] allows users to extract large amounts of
data from the “deep web” by automating many submissions
of the same form on a web site and allowing users to collect
all of the results into a single page. Vegemite provides a
more general system for scripting the web to perform the
queries like those possible with Transcendence, and Vege-
mite also allows this data to be aggregated with data col-
lected from other web sites.

VEGEMITE’S USER INTERFACE
Vegemite is implemented as an extension to the Mozilla
Firefox web browser. Its user interface consists of two main
parts: a sidebar and a VegeTable editor (see Figure 1). The
sidebar along the left, borrowed and modified slightly from
CoScripter [14], is for creating, executing, and saving
scripts. It also contains a list of VegeTables that the user has
stored, and has buttons for opening saved VegeTables and
creating new ones. The editor along the bottom of the
browser window consists of a spreadsheet-like table for
storing data, and buttons for extracting data and running
scripts over the table.

An example of using Vegemite
Jane is looking to buy a house in San Jose, California and
has been using the real estate listings in the San Jose Mer-
cury News web site to search for houses. One of her main
criteria is whether a house’s neighborhood is “walkable,”
i.e., within walking distance of shopping, jobs, and transit.
She finds a web site called WalkScore.com that takes an
address and calculates a walkability score. Jane would like
to calculate scores for each house in a list of those currently
on the market.

a)

b)

Figure 2. Extracting initial data for the walkability scenario.
a) Vegemite in bulk extraction mode on the Mercury News
site. b) The data after being extracted into the VegeTable.

Figure 3. The Vegemite interface after the “Calculate Walk

Score” script has been recorded. Selecting the script from the
Run menu will run the script for each of the selected rows.

Figure 4. Vegemite during its computation of the walk scores

for all of the remaining rows in the walkability scenario.

Jane first navigates to the real estate listings section of Mer-
curyNews.com, enters her criteria (such as ZIP code and
number of bedrooms) and clicks Search. After getting the
results, Jane decides to import this data into a VegeTable so
that she can augment the data with walkability scores.

Jane opens the CoScripter sidebar, clicks on the VegeTables
tab at the bottom, and clicks “New VegeTable…” This
opens the VegeTable editor along the bottom of the browser
window. She then clicks the “Import Data from Web
Page…” button, which starts Vegemite’s bulk data extrac-
tion mode. Once in this mode, Jane can click on the web
page elements that she wants in one row of her table. In this
case, she clicks the address and the price for the first house
in the list of results. As she clicks on the address for the first
house, Vegemite highlights that element, and then also
highlights the addresses of the other houses in gray, indicat-
ing that these addresses will be extracted into the first col-
umn of the table (see Figure 2a). She also clicks on the
price for the first house, and Vegemite highlights the cor-
responding prices for the other houses in the search results.
To finish extracting, she clicks “Done Extracting.” Vege-
mite takes the extracted data and adds them to the table (see
Figure 2b).

Now Jane wants to add a column to her table and populate
it with walkability scores. First, she adds a new column in
the table and labels it “Walk score.” She then clicks on the
“Create New Script” button at the top of the editor, which
starts recording a new script for adding a walkability score
to a row in the table. She then navigates the browser to
WalkScore.com, copies the address from the first row in the
table, pastes it into the textbox in the web page, and clicks
Search. After the result appears, Jane copies the score from
the page and pastes it into the “Walk score” column of the
first row. Vegemite records all of Jane’s actions into a script
whose language resembles English, and displays the script
in the CoScripter sidebar. She clicks Save in the sidebar and
names her new script “Calculate Walk Score.” Vegemite
automatically associates this script with the currently
opened VegeTable, which adds the script to the VegeTable’s
“Run” menu (see Figure 3).

Jane can now use her script to fill in the walkability score
for the rest of the rows. She clicks the button with the
checkmark in the upper left-hand corner to select all of the
rows, goes to the Run menu, and chooses “Calculate Walk
Score” (see Figure 3). Vegemite loads the script and runs it
once for each selected row, replacing instances of “row 1”
in the script with the current row number, thus calculating
the walkability score for every row (see Figure 4).

Scripts can also help the user perform operations across the
collected data. For example, once Jane has collected all of
the walkability score data, she decides to e-mail the five
houses with the best scores to her real estate agent. So she
logs into Gmail.com and composes a new message. She
creates a new script called “email listing” where she copies
the address and price of the house with the best score and

pastes it into the Compose box. She then selects the other
four houses and runs the “email listing” on those rows. She
finally clicks Send. Of course, such a script would not be
useful for sending a list of walkable houses just once, but
this script might be useful for sending a new list of houses
to the real estate agent every week.

Other Scenarios
The above scenario is representative of Vegemite’s
strength, which is using existing web sites to compute new
values for a data set. The following scenarios demonstrate
other uses of the system.

Vegemite can be used to find a list of the closest yogurt
shops to a particular address in terms of driving distance.
To create this mashup, the user would extract a list of yo-
gurt places from a web site such as yellowpages.com, and
then record a script that visits a map web site and calculates
the driving distance. The table of yogurt shops and dis-
tances can be used to make a decision about which restau-
rant to visit.

The U.S. Department of State publishes a monthly bulletin
that lists which visa numbers have been processed in the
past month. Aggregating the information from all of the
archived bulletins can allow waiting applicants to determine
how fast the visas are being processed on average. This
information can be extracted in Vegemite by creating a ta-
ble from the list of all available archives and then creating a
script that browses into each archive and extracts the neces-
sary values.

The Internet Movie Database (IMDb) publishes a list of its
top 250 movies as voted on by visitors to the web site. Ve-
gemite can be used to extract this table and then annotate it
with other information about each movie, such as the name
of each movie’s director.

ARCHITECTURE
Vegemite consists of two main parts: VegeTables for storing
data, and the CoScripter engine for recording and playing
back actions on web pages.

CoScripter
CoScripter [14] is an extension to the Mozilla Firefox web
browser that allows users to record and play back web-
based processes. As users interact with the web browser
while CoScripter is in recording mode, their actions are
recorded into a pseudo-natural language script. The script-
ing language’s syntax resembles English, so that people can
understand it in addition to computers. Saved scripts are
stored in a central repository where they can be viewed and
executed by other users.

Vegemite extends the CoScripter engine with several capa-
bilities: copy and paste operations, recording and playing
back operations on the table, and selecting strings from
within a web page. We have also added several user inter-
face elements in the sidebar to support interactions with the
VegeTables.

VegeTables
A VegeTable consists of a set of tabular data and scripts
that extract data into the table or perform operations on the
table data. VegeTables are stored on a central server, which
is the same server that stores CoScripter scripts. This
enables users to access their data on any machine with Ve-
gemite installed. In the future, storing the tables on a web
server will make possible sharing VegeTables with other
Vegemite users and using them as inputs to other mashups.

EXTRACTING DATA IN BULK
We realized early on that Vegemite’s script-based nature
works best if the user already has a data set available on
which the scripts can be run. In order to support the use of
scripts, we added a bulk data extraction feature to Vegemite
that allows users to populate the VegeTable with a large
quantity of data from a single web page. Once the table is
populated, scripts can easily be applied. The bulk data ex-
traction algorithm that we have implemented is similar to
the XPath-based schemes employed by Sifter [10], Karma
[19], and Dontcheva et al’s systems [3, 4].

Our bulk extraction mode is an interactive process. When in
extraction mode, elements on the current web page will
highlight as the user moves the mouse above them. The
user’s goal is to click on the elements that represent data
that should be extracted into the first row of the VegeTable.
When the user clicks an element, she is providing an exam-
ple of the data that should be included in one column of the
VegeTable. Vegemite uses all of the clicked elements to
determine the rest of the data that should be extracted from
the page.

Our extraction algorithm makes use of the tree-based DOM
representation that all web pages are constructed from. An
example of a DOM tree for a page with repeating content is

shown in Figure 5. In this particular page, each result is
displayed in a single row made up of two table cells. Sup-
pose that the first element that the user clicks on during the
extraction process is the SPAN element highlighted in Figure
5. In order to determine the other data to extract, Vegemite
first determines the deepest node in the tree that is a parent
of all of the clicked elements. Since only one node has been
clicked, this common parent is just the parent of the SPAN
node.

For the parent node, we compute a partial XPath expression
that describes how to find the clicked nodes from the par-
ent. We then search for siblings of the parent node that have
the same type, and use the partial XPath expression to de-
termine if those siblings have child nodes in the same loca-
tion as the node that the user has clicked. All matches are
counted. The process is then repeated for the parent node’s
parent until we reach the BODY element of the document.
Match counts are saved for each parent, and the parent re-
ceiving the highest match count is used as the basis for ex-
tracting data.

In the particular case of Figure 5, we would start by compu-
ting matches for the parent of the SPAN, which we can de-
scribe as TR[1]/TD[1]. The match count for this parent is 1,
because TR[1]/TD[2] also contains a SPAN element. We then
proceed to the parent of TR[1]/TD[1], which is TR[1]. The
match count for this parent is at least 1 as shown in the fig-
ure, because TR[2]/TD[1] contains a SPAN element. The
dashed line in the figure is meant to suggest that more rows
are in the document than are shown in the figure, and we
can assume that the match count would be approximately
equal to the number of rows in the page. As we continue up
the tree, the TABLE parent will have 0 matches and then the
algorithm completes.

Each time the user clicks another element, the algorithm is
run again to determine a new hypothesis for the elements
that should be extracted starting from the common parent of
all the clicked elements. We do not include the previous
hypothesis in the determination of the next hypothesis. This
means that the data set that Vegemite would extract can
change radically as the user selects additional elements;
however, this does not seem to happen in practice.

Once the user is done clicking elements, she may click the
“Done Extracting” button to extract data into the table. For
the parent with the highest match count, the parent element
and each of its siblings that contain data are extracted into
the table as a separate row. Some rows may be lacking data
for some columns, and in such cases those cells will be left
empty. Any row that contains no data for any column is not
included in the table.

OPERATING ON TABLES WITH SCRIPTS
Once users have extracted a data set into a VegeTable, they
can use Vegemite’s scripting capabilities to augment the
data and create operations that act on the data. Vegemite
extends CoScripter’s scripting language, which is capable
of executing actions that a person can perform in a web

BODY

TABLE

TR[1]

TD[1]

SPANA

TD[2]

SPAN

TR[2]

TD[1]

SPANA

TD[2]

SPAN

Figure 5. An example of DOM structure from a web page with
repeating content, such as search results. The highlighted
SPAN node indicates the element that the user selects first

after entering bulk extraction mode.

browser. A typical CoScripter script contains statements
such as click the “Go” button or enter “washington” into
the “Search” textbox. When CoScripter runs a script, it
literally performs the statement’s action in the web browser.

Vegemite adds the following capabilities to CoScripter:

• recording and playback of copy and paste interactions

• recording and playback of operations that modify the
VegeTable

• generalization of row labels for applying scripts to dif-
ferent rows than they were recorded on

• labeling for certain non-form elements

• identification of any page element via XPath

The standard copy and paste operations are used by Vege-
mite as its principal means of moving data from web pages
to the VegeTable and from the VegeTable back into web
pages. We chose to use copy and paste because they are
operations that users are already familiar with and can easi-
ly demonstrate to the system. In contrast, most other ma-
shup systems use special DOM-based selection mechanisms
to extract data from content. Mash Maker [5] does make
use of the copy/paste metaphor as a part of this process, but
it implements its own set of copy/paste operations, whereas
Vegemite records and plays back the built-in functionality
available in Firefox. Using the built-in functionality allows
us to record copy/paste in the VegeTables in exactly the
same way we record copy/paste for web pages.

We have also added recording and playback of the bulk data
extraction process. CoScripter scripts may now contain
lines such as begin extraction and end extraction.
These lines work with the standard CoScripter recording
and playback of clicks within web pages to allow for re-
cording and playing back the entire bulk extraction process.
Scripts can record and play back most modifications that
happen to the VegeTable.

Actions recorded on the table must reference the appropri-
ate table cell, for which we use the format column D of
row 1. Scripts are currently recorded in the context of
whatever row the user chooses for demonstration. If the
user pastes a value into row 1, then row 1 will be recorded.
If the user uses row 5, then row 5 will be recorded. Howev-
er, when the user selects a row in the VegeTable and runs a
script, Vegemite modifies the row numbers in the script to
match the selected row. This is similar to the way cell refer-
ences in spreadsheets are changed when they are copied
into different cells. Vegemite then runs through the script
step by step so that the user can watch Vegemite perform
the actions of the script on each row. When the user selects
multiple rows and runs a script, Vegemite performs the
substitution as each row is processed.

When we added support for copy and paste from web pag-
es, we discovered that CoScripter’s existing labeling system
was not sufficient to label all of the target text that might be

copied. The original labeling system was designed to find
labels for interactive elements, such as form elements and
links, and heuristics such as using the text to the left of the
copied selection were not always effective. We added some
additional heuristics to improve the labeling system. For
example, if the text being copied is within a table cell, Ve-
gemite uses the row and column headers of the cell as la-
bels.

In a few instances, we found that the labeling heuristics
were not sufficient. In these cases, when a human-readable
label cannot be found, we fall back to using an XPath ex-
pression that identifies the location of the element.

Reusing Vegemite Mashups
We designed Vegemite to support the creation of ad hoc
mashups: an aggregation of data that is collected once, used
for some purpose, and then thrown away. However, even if
the data is not useful again, it may be useful to reuse the
operations used to extract and aggregate the data. From
CoScripter, we already have the ability to save the scripts
which are the principal means of aggregating new data in
Vegemite. We have also added features to CoScripter that
allow us to save the bulk data extraction process as a script.

A key addition to the saving of scripts is the linking of
scripts with a VegeTable. Each table not only saves its data,
but also the scripts that were used to extract and aggregate
that data. We have built in several interface features that
allow users to make use of their saved operations on a Veg-
eTable (see Figure 1). The Run menu allows users to rege-
nerate the values of particular columns. We have also added
a “Refresh Table” button that will run all of the scripts
saved on a table in the appropriate order, thus regenerating
the data in the table with more recent values.

FORMATIVE USER STUDY
We conducted an informal user study of Vegemite to test the
ease of use of the interface, and to find out whether users
would be able to apply Vegemite in a variety of situations.

Eight volunteers from our research lab participated in the
study. Four were female, four were male, and six had sig-
nificant programming experience. Two of the programmers
had previously created mashups on their own. Participants
were compensated for their time with a US$10 lunch coupon
for our lab cafeteria. The study took approximately 60 mi-
nutes to complete.

All study sessions were conducted in an office at our re-
search lab using a laptop computer that had the latest ver-
sion of Firefox and the Vegemite extension. Each session
began with the experimenter giving the subject a short
demo of using Vegemite to create a simple mashup of the
IMDb Top 250 Movies list with the names of the movie’s
directors from elsewhere on the IMDb web site. This demo
took approximately 5–10 minutes.

After the demo, the subjects were asked to construct three
mashups on their own. These three mashups correspond to

three of the scenarios for Vegemite that we described earli-
er:

• Real Estate Walkability: For all of the houses for sale
in the 95003 ZIP code with asking prices between
$1,750,000 and $2,000,000, you want to know their
Walk Score. This task required use of the following
web sites: www.mercurynews.com/realestate and
www.walkscore.com.

• Nearby Yogurt: For all of the yogurt places in the
94301 ZIP code, find the driving distance from the
house address of 680 University Ave, Palo Alto, CA.
This task required use of the following web sites:
www.yellowpages.com and maps.yahoo.com.

• Visa Bulletin Dates: For all of the archived Visa Bul-
letins, extract a list of the dates they show for the “Em-
ployment-based 3rd All-Chargeability Areas” category.
This task required use of the following web site:
travel.state.gov/visa/frvi/bulletin/bulletin_
1770.html.

We specified the web sites and parameters that should be
used for the tasks to make it easier to compare usability
problems across all of the subjects. Bookmarks were pro-
vided to these sites in the test browser to allow subjects to
easily access these web sites.

We asked the subjects to think aloud as they worked. The
experimenter was available for help if the subjects re-
quested it, but an explicit request was required.

Results
Of the 24 tasks (8 users × 3 tasks), 18 tasks were completed
successfully, 4 tasks were not completed, and 2 tasks were
skipped due to time restrictions. Inevitably bugs in the
software cropped up in some sessions, but the experimenter
was able to correct these problems when they occurred and
the subjects were able to proceed with the study. A limita-
tion of CoScripter also had to be worked around in all of the
studies. CoScripter currently does not correctly pause when
a web page makes an Ajax request, so it is necessary for the
user to manually insert pause commands into CoScripter
scripts that automate Ajax web sites. For this study, the ex-
perimenter inserted “wait 6 seconds” commands in three
places to assist subjects during the study.

Of the four task failures, two occurred in the first task. In
general, subjects struggled with the first task as it was the
first time they had actually used the system and Vegemite
has a definite learning curve. Subjects generally became
more comfortable with the system as they proceeded to the
later tasks.

One subject in particular had difficulty with the tool, was
only able to attempt two of the tasks, and failed on both.
Despite the difficulties, this subject felt confident that he
could use Vegemite at the end of the session. This subject
was one of the two non-programmers in our study. Of the
remaining two task failures, one happened to the other non-

programmer subject and the other happened to a program-
mer. This may indicate that more work is needed to im-
prove our interface for non-programmers.

User Study Discussion
Several users found the sequence of steps needed to con-
struct a mashup overly complicated. One user stated “If I
had been given the tool without any instruction, I could not
have figured out how to use it. It needs to be more ‘disco-
verable.’” Another user said that it was confusing to use one
technique to create the initial table, and another technique
to add information to a new column. Note that in the ver-
sion of the tool that was tested, the bulk data extraction
process was completely separated from the script-based
nature of CoScripter. We have since added the ability to
record the data extraction process as a script, and now the
interfaces for extracting initial data and adding new data to
the table are much more consistent.

Some of the difficulties were due to user interface details
that we can improve in future versions of Vegemite. For
example, the creation of a script to get new data for a col-
umn and the creation of a new column in the VegeTable are
not linked in the user interface. Scripts are also not explicit-
ly linked with the column or columns that they populate.
One possible improvement is to add a “New script…” but-
ton at the top of every empty column and then replace it
with a “Run script” button once the script has been record-
ed.

Another problem arose because of the separation between
Vegemite’s primary interface in the VegeTable editor, and
CoScripter’s primary interface in its sidebar. For example,
some users initially tried to click the “Run” button in the
CoScripter sidebar instead of selecting the script from Ve-
gemite’s “Run” menu. To correct this particular example,
we have since added a “Run All Rows” button to the Co-
Scripter toolbar. More work is needed to integrate the Co-
Scripter and Vegemite interfaces, however.

Despite these problems, at the end of their sessions all of
the users reported that they were comfortable with the tool,
and they felt it would be easy for them to use it to create
additional mashups. A few subjects asked if they could get a
copy of the tool to use on their own computer.

DISCUSSION AND FUTURE WORK
In Vegemite, the primary method of mashing up data is to
take one or more values from a row of a VegeTable, use it
as input to perform an action on another web site, and then
put the results of that action back into the table. We believe
the advantage of this approach is that it matches up more
easily with how users would think about extracting this
data. In addition, it is easy for the user to inspect how the
value of a particular cell was created and modify the value
or the script on the fly if a problem is discovered.

This means that Vegemite can use the web itself as a com-
putational fabric. For example, Vegemite does not have
built-in currency conversion, but there are numerous web

sites that can perform this function. To convert currency
within a table, a script simply copies the value from the
table into the web site’s input form, and then copies the
value from the result page into a new cell in the table. Even
more mundane functions can be executed using existing
web sites, such as time/date arithmetic and string manipula-
tion.

Data transformations are only one benefit of Vegemite’s
general-purpose ability to mix data from its table with the
web. An area that we have not yet explored is using scripts
to automate visualization of the data in a VegeTable. For
example, a Vegemite script might automate a visualization
site such as Many Eyes [20] to allow users to look at their
data in new ways.

An advantage of using CoScripter as our scripting engine is
its support for mixed-initiative interaction, where users can
perform some steps manually if they wish. Mixed-initiative
execution saves the user from having to construct code that
can handle all corner cases within a data set. If a script does
not perform correctly for a particular row, the user can se-
lect that row and step through the script, skipping steps that
do not work and performing actions manually if necessary.
This eliminates much of the debugging overhead caused by
corner cases, which is essential since data models from web
sites are unlikely to be perfect. Furthermore, mixed-
initiative interaction allows the human to handle actions
that are difficult to specify computationally (e.g., selecting
something based on semantic meaning) and let the system
handle the rest.

There are some limitations to the Vegemite approach. Per-
formance is an obvious issue. A script of web page actions
is often slow, since there are usually multiple round trips to
the web server. These delays are magnified when the script
is run for each row to fill a column in a VegeTable. In prac-
tice, we have not found this to be a large problem because
there are often a relatively small number of rows (around 30
maximum) in the mashups that we have created so far. Us-
ers can also leave the process to run in the background
while they plan their next steps or work in another applica-
tion. Furthermore, running a Vegemite script is still faster
than performing the equivalent task manually.

It may be possible to address some of the performance is-
sues by taking advantage of the knowledge that a script will
be executed multiple times for different rows. Nearly all
scripts start with going to a specific URL and occasionally
some additional navigation steps, which will always be ex-
ecuted in the same way every time the script is run. Vege-
mite could use an approach similar to Smart Bookmarks [8]
to save the state of the page after the common page naviga-
tion script steps have been executed, and then subsequent
runs of the script could start from the saved page state ra-
ther than at the beginning. Alternately, after a script has run
it might be possible to use the browser’s back button to step
back to the point where the next script’s execution will di-
verge. We have not experimented with any of these ideas

however, and implementing performance optimizations is
the subject of future work.

Another issue for Vegemite is ambiguity in the data that
should be collected from a given page. Currently, our pri-
mary means of copying data is through the “copy text fol-
lowing a label” rule, which has worked reasonably in prac-
tice but will fail if Vegemite cannot identify a label for the
extracted data or the label that was found changes across
script runs. We plan to address this limitation through two
approaches. First, we are interested in applying generaliza-
tion techniques found in programming-by-demonstration
systems such as Eager [2]. Second, we plan to extend Ve-
gemite so that it can understand the semantics of the page it
is acting on, through microformats [15] or data detectors
[6]. For example, if a user copies a person’s name from a
list of people that was marked up with the hCard microfor-
mat, Vegemite could record the action as copying a person’s
name, as opposed to just copying text. This would improve
the robustness of the scripts that Vegemite can record and
execute.

One important type of ambiguity that may be harder to ad-
dress occurs when Vegemite must parse search results re-
turned by a web site and choose the intended result. For
example, when searching for a film in a public library, the
search results may include a novel of the same name, a vi-
deotape version, and a DVD version. If the user’s goal in
creating the mashup is to find out if their local library has a
DVD of a film, the user must be able to specify how to select
the record of interest. Currently, Vegemite supports only
order-based selection of values (e.g., the third result). More
work is needed to explore and understand how the user
could specify, for example, that they are only interested in
“DVD” results.

Data on the web is often in the wrong format or has errors.
Vegemite allows users to directly edit the data table to cor-
rect minor mistakes; however, it does not currently support
automatic or semi-automatic data cleaning. One way to
address this is to adopt an approach similar to Karma,
where the user cleans one data item in a table, and Karma
infers the data cleaning transformation and applies it to the
other data in that column. Another approach is to use a sys-
tem like Topes [17] for end users to specify and apply data
cleaning transformations.

More work is also needed to study and improve on the usa-
bility of Vegemite, especially for non-programmers. We
saw from the user study that the Vegemite tool has a defi-
nite learning curve, and that our programmer subjects were
much more comfortable using the system after having used
it to create several mashups. Non-programmers may have
even more difficulty. In the future, we plan to do a more
comprehensive user study involving only non-programmers
to better understand the issues that these particular users
face.

Another area of future work is to explore where the Vege-
mite tool should be located within the users’ environment.

A point of contention among the authors is whether Vege-
mite should be integrated more tightly with CoScripter and
the web browser, or whether Vegemite might be more use-
ful if it were integrated with an existing spreadsheet tool. In
the spreadsheet case, CoScripter scripts would become cus-
tom formulas that users could apply to other data within
their spreadsheet. Such an idea would be somewhat remi-
niscent of the A1 system for helping system administrators
[13], though a key challenge would be maintaining the
mixed-initiative style that is so powerful in the current de-
sign.

CONCLUSION
Vegemite is distinguished from other mashup tools by 1) its
focus on programming by demonstration; 2) iterative, inter-
active transformation of data by the user; and 3) mixed-
initiative interaction. These features lower the barrier to
creating mashups and relax the assumption that the program
must perfectly handle all cases or not handle them at all. By
making mashups easier to build, more users can construct
mashups on the fly as needed to meet their immediate, idio-
syncratic needs.

ACKNOWLEDGMENTS
We thank our user study participants for helping us evaluate
Vegemite, and the rest of the CoScripter team for their val-
uable comments.

REFERENCES
1. Bigham, J.P., A.C. Cavender, R.S. Kaminsky, C.M.

Prince, and T.S. Robison. Transcendence: enabling a
personal view of the deep web In Proc. IUI 2008.
ACM Press (2008), 169-178.

2. Cypher, A., Eager: Programming Repetitive Tasks by
Demonstration, in Watch What I Do: Programming by
Demonstration, A. Cypher, Editor. MIT Press. pp. 205-
217, 1993.

3. Dontcheva, M., S.M. Drucker, D. Salesin, and M.F.
Cohen. Relations, Cards, and Search Templates: User-
Guided Web Data Integration and Layout. In Proc.
UIST 2007. ACM Press (2007), 61-70.

4. Dontcheva, M., S.M. Drucker, G. Wade, D. Salesin,
and M.F. Cohen. Summarizing Personal Web Brows-
ing Sessions. In Proc. UIST 2006. ACM Press (2006),
115-124.

5. Ennals, R. and D. Gay. User-Friendly Functional Pro-
gramming for Web Mashups. In Proc. ICFP 2007.
ACM Press (2007), 223-234.

6. Faaborg, A. and H. Lieberman. A Goal-Oriented Web
Browser. In Proc. CHI 2006. ACM Press (2006), 751-
760.

7. Fujima, J., A. Lunzer, K. Hornbaek, and Y. Tanaka.
Clip, Connect, Clone: Combining Application Ele-
ments to Build Custom Interfaces for Information
Access. In Proc. UIST 2004. ACM Press (2004), 175-
184.

8. Hupp, D. and R.C. Miller. Smart Bookmarks: Auto-
matic Retroactive Macro Recording on the Web. In
Proc. UIST 2007. ACM Press (2007), 81-90.

9. Huynh, D., S. Mazzocchi, and D. Karger. Piggy Bank:
Experience the Semantic Web Inside Your Web
Browser. In Proc. ISWC 2005. Springer (2005), 413-
430.

10. Huynh, D., R.C. Miller, and D. Karger. Enabling Web
Browsers to Augment Web Sites’ Filtering and Sorting
Functionalities. In Proc. UIST 2006. ACM Press
(2006), 125-134.

11. Huynh, D., R.C. Miller, and D. Karger. Potluck: Data
Mash-Up Tool for Casual Users. In Proc. ISWC 2007.
Springer (2007), 239-252.

12. IBM, IBM Lotus Mashups.
http://www.ibm.com/software/lotus/products/mashups/

13. Kandogan, E., E. Haber, R. Barrett, A. Cypher, P.
Maglio, and H. Zhao. A1: End-User Programming for
Web-based System Administration. In Proc. UIST
2005. ACM Press (2005), 211-220.

14. Little, G., T.A. Lau, A. Cypher, J. Lin, E.M. Haber,
and E. Kandogan. Koala: Capture, Share, Automate,
Personalize Business Processes on the Web. In Proc.
CHI 2007. ACM Press (2007), 943-946.

15. Microformats. http://microformats.org/
16. Microsoft, Microsoft Popfly. http://www.popfly.com/
17. Scaffidi, C., B. Myers, and M. Shaw. Topes: Reusable

Abstractions for Validating Data. In Proc. ICSE 2008.
ACM Press (2008), 1-10.

18. Solvent. http://simile.mit.edu/wiki/Solvent
19. Tuchinda, R., P. Szekely, and C.A. Knoblock. Building

Data Integration Queries by Demonstration. In Proc.
IUI 2008. ACM Press (2008), 170-179.

20. Viégas, F.B., M. Wattenberg, F. van Ham, J. Kriss, and
M. McKeon, Many Eyes: A Site for Visualization at
Internet Scale. IEEE Transactions on Visualization and
Computer Graphics, 2007. 13(6): 1121-1128.

21. Wong, J. and J. Hong. Making mashups with Marmite:
towards end-user programming for the web. In Proc.
CHI 2007. ACM Press (2007), 1435-1444.

22. Yahoo!, Pipes. http://pipes.yahoo.com/

http://www.ibm.com/software/lotus/products/mashups/
http://microformats.org/
http://www.popfly.com/
http://simile.mit.edu/wiki/Solvent
http://pipes.yahoo.com/

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	VEGEMITE’S USER INTERFACE
	An example of using Vegemite
	Other Scenarios

	ARCHITECTURE
	CoScripter
	VegeTables

	EXTRACTING DATA IN BULK
	OPERATING ON TABLES WITH SCRIPTS
	Reusing Vegemite Mashups

	FORMATIVE USER STUDY
	Results
	User Study Discussion

	DISCUSSION AND FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

